现代仓储管理系统集成了多种先进技术,以实现高效、自动化的仓储运营。这些系统包括物联网(IoT)传感器、大数据分析和人工智能(AI)、仓库执行系统(WES)、自动化存储和检索系统(AS/RS)、云计算和数据存储,以及安全和监控系统。通过这些技术的协同工作,仓库能够实现实时数据收集和分析,优化资源分配,减少人工干预,提高运营效率。
在这些系统中,库位占用状态的判定准确性尤为重要,通过采用激光雷达或视觉技术,实时监测每个库位的被占据状态以及货物的堆高信息,使得移动机器人可以获取实时精细的数据支持,从而进行下一步准确的货物取放操作。然而,在库位管理使用过程中,仍面临着以下挑战:
挑战一:AGV与人工在同一仓库中进行货物堆放,造成WMS系统更新不及时
目前在大多数已经应用了AGV的仓库中,依然会存在人工堆放物品的情况,这种情况会造成WMS系统无法实时判断每个库位的实际占用情况,从而导致WMS给到AGV的信息不准确,已经被占据的库位如果不能及时被识别出来,会造成AGV收到的指令错误,不仅降低运行效率,且容易碰撞其他货物或设备,严重的情况下,可能引发安全事故,危及人员安全和设备运行。
挑战二:单点激光雷达传送的库位信息不够准确,造成堆放事故
部分仓库采用单点激光雷达进行库位检测,这种测距雷达一次只能发射一束激光到物体表面形成一个点,因此这样的测距方式有时会忽略纸箱与纸箱或托盘与托盘之间的缝隙,进而将当前库位识别为缺少货物或为空,同样易造成堆放事故。
挑战三:纯RGB相机校验方法单一,存在误判和信息缺失风险
采用RGB相机进行库位状态判定时,存在几个弊端:一是通过深度学习对目标区域进行检测时,一旦有训练集之外的物体进入库位时,很可能会造成误检,给出错误的库位判定信息;二是针对有货物堆叠需求的库位判断时,RGB相机给出的信息由于缺少货物高度信息,导致难以安排堆叠任务。另外,有部分仓库采用超广角鱼眼相机进行库位状态判定,边缘畸变大,对模型训练与预测准确性有较大挑战,且需额外增加带GPU的服务器成本。