Summary - CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly

本文介绍了一种名为CSRNet的网络模型,它用于高密度场景的人群计数,能生成高质量的密度图像。CSRNet采用卷积神经网络作为特征提取器,并利用空洞卷积替代池化层,有效提升感受野,简化了模型结构,提高了训练效率。该模型在多个数据集上取得了优秀结果。

[paper] [code]

背景

文中提出了一种用于识别高密度场景的网络模型 CSRNet,用于精确完成场景计数并生成高质量密度图像。CSRNet 由两部分构成:前半部分为卷积神经网络CNN,作为2D特征提取器,后半部分使用空洞卷积(Dilated Convolution)来增大感受野,并代替池化层。由于全卷积的结构,CSRNet很容易训练。文章在4个数据集上对CSRNet进行了测试,并取得了当前最优的效果。

此前效果最好的人群计数方法主要是基于多列卷积网络(MCNN)和密度等级分类器的 SwitchCNN 和 CP-CNN,存在以下不足:

  • 多列卷积网络在训练困难,耗时长。
  • 多列卷积网络的各列效果大同小异,结构冗余大。
  • 密度等级分类器的精度难以把控,高精度的分类器又会导致模型结构过于复杂。
  • 大量参数被用于密度等级分类器,使得密度生成部分反而精度不足。

CSRNet 结构

CSRNet 的模型结构由 front-end 和 back-end 组成。其中 front-end 是 vgg-16 的前 10 层,back-end 则有 A、B、C、D 四种基于不同 dilation rate 的配置,如下图所示。

在这里插入图片描述

Ablation Experiments

在 S

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值