Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations

文章目录

Locatello F., Bauer S., Lucic M., R"{a}tsch G., Gelly S. Sch"{o}lkopf and Bachem Olivier. Challenging common assumptions in the unsupervised learning of disentangled representations. In International Conference on Machine Leaning (ICML), 2018.

解耦表示学习(disentangled representations)通常假设图片有独立的几个因素决定, 即:
p ( x ∣ z ) , p ( z ) = ∏ i = 1 d p ( z i ) . p(x|z) , p(z) = \prod_{i=1}^d p(z_i). p(xz),p(z)=i=1dp(zi).
本文对这个假设提出质疑.

主要内容

VAE 首先通过encoder 将 x x x映射为隐变量 z z z, 再通过隐变量 z z z恢复出 x x x, 其中赋予先验 p ( z ) p(z) p(z)常常为标准正态分布, 并且最大化ELBO的同时要最小化:
K L ( q ϕ ( z ∣ x ) ∥ p ( z ) ) , \mathrm{KL} (q_{\phi}(z|x) \| p(z)), KL(qϕ(zx)p(z)),
这表示我们希望所提取的隐变量 z z z的各分量是相互独立. 形象地说, 我们改变 z i z_i zi就有图片相应的元素发生改变而其它元素不变. 作者认为这种假设简单而美好, 但是在无监督的模式下, 该假设是不可能成立的.

实际上, 假设先验分布的确如此 p ( z ) = ∏ i d p ( z i ) p(z) = \prod_{i}^d p(z_i) p(z)=idp(zi), 则一定存在一个双射 f : s u p p ( z ) → s u p p ( z ) f: \mathrm{supp}(z) \rightarrow \mathrm{supp}(z) f:supp(z)supp(z), 是的 ∂ f i ( z ) ∂ z j ≠ 0 , a . e . , ∀ i , j \frac{\partial{f_i(z)}}{\partial z_j}\not = 0, \mathrm{a.e.}, \forall i, j zjfi(z)=0,a.e.,i,j, 且 z , f ( z ) z, f(z) z,f(z)同分布, 即
P ( z ≤ u ) = P ( f ( z ) ≤ u ) , P(z \le u) = P(f(z) \le u), P(zu)=P(f(z)u),
又因为 f f f是一个双射, 故
p ( x ∣ z ) = p ( x ∣ f ( z ) ) , p(x|z) = p(x|f(z)), p(xz)=p(xf(z)),
进一步有
P ( x ) = ∫ p ( x ∣ z ) p ( z ) d z = ∫ p ( x ∣ f ( z ) ) p ( f ( z ) ) d f ( z ) . P(x) = \int p(x|z)p(z) \mathrm{d}z = \int p(x|f(z))p(f(z)) \mathrm{d}f(z). P(x)=p(xz)p(z)dz=p(xf(z))p(f(z))df(z).
故边缘分布是一致的, 这意味着, 我们除了 p ( z ) p(z) p(z), 还有 p ( f ( z ) ) p(f(z)) p(f(z))同样可以到处我们的观测数据 P ( x ) P(x) P(x), 反之, 没有额外的信息(即在无监督条件下)我们无法确定所拟合的分布是 p ( z ) p(z) p(z)还是 p ( f ( z ) ) p(f(z)) p(f(z)).
倘若是后者, 我们改变隐变量的某一个维度 f i f_i fi, 由于偏导数均不为0, 则几乎所有的 z z z都改变了, 也就是真正的控制元素都会发生改变, 这和我们的解耦表示学习的初衷产生了背离. 所以结论就是在无监督条件下, 想要解耦表示是几乎不可能的.

注: 上面的 f f f的构造不是唯一的;
注: 上面的证明用到了和顺序统计量一样的有趣的玩意.

作者做了很多很多实验, 个人觉得最能体现这一点就是, 所有这些强调解耦表示的VAE都对参数初始化和超参数选择异常敏感.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值