介绍
方言是中国语言文化的重要组成部分,各地方言之间存在着显著的差异。湖南方言作为中国方言中的一种,具有独特的语音特点。本文将介绍如何使用MFCC(Mel频率倒谱系数)特征和HMM(Hidden Markov Model,隐马尔可夫模型)实现湖南方言识别,并提供相应的Matlab源码。
-
数据集准备
首先,我们需要一个包含湖南方言语音样本的数据集。这个数据集应该包括不同方言的录音文件,每个文件对应一个方言的发音。确保数据集中的样本具有多样性和代表性,以便更好地训练模型。 -
特征提取
在语音识别中,MFCC是一种常用的特征表示方法。MFCC特征将语音信号转换为具有较好区分度的特征向量。以下是使用Matlab计算MFCC特征的示例代码:
% 音频读取
[speech, fs] = audioread