HUST算法实践__POJ1050

该博客介绍了如何使用动态规划解决二维数组中寻找最大子矩形和的问题。首先,通过差分数组将二维矩阵转换为多个一维数组,然后对每个一维数组求最大子段和。最后,遍历所有一维数组的最大子段和,找出最大值作为最终答案。算法思想借鉴了一维数组的最大子段和问题,并提供了C++代码实现。
摘要由CSDN通过智能技术生成
题目传送门

问题描述

Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:

0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:

9 2
-4 1
-1 8
and has a sum of 15.

输入

The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].

输出

Output the sum of the maximal sub-rectangle.

算法思想

对于一个一维数组, 我们已经知道如何用动态规划的思想求解其最大子段和 (不熟悉的同学可以移步https://blog.csdn.net/MaTF_/article/details/122679311?spm=1001.2014.3001.5501), 其状态转移方程为dp[i]=max(arr[i],dp[i-1]+arr[i])

我们可以尝试将矩阵转化为多个一维数组, 转化方式为: 枚举(i,j),满足i<=j, 将第i行到第j纵坐标相同的元素全部相加(借助差分数组), 构成一个一维数组.

我们对转化而来的每一个一维数组, 分别求其最大字段和, 所有最大子段和中的最大值即为所求答案.

代码实现
#include<iostream>
#include<algorithm>
#define maxn 105
using namespace std;

int n;
int arr[maxn][maxn];
int new_arr[10000][maxn];
int dp[10000][maxn];
int d[maxn][maxn];
int cnt=0;
int _max=-99999999;

void init(){		//将矩阵转化为若干一维数组
	for(int i=0;i<n;i++){
		for(int j=i+1;j<=n;j++){
			for(int k=1;k<=n;k++){
				new_arr[cnt][k]=d[j][k]-d[i][k];
			} 
			cnt++;
		}
	}
}
void find_max(int x){	//求解一维数组的最大子段和
	for(int i=1;i<=n;i++){
		dp[x][i]=max(new_arr[x][i],dp[x][i-1]+new_arr[x][i]);
	}
}
void solve(){			//求解所有一维数组的最大子段和
	for(int i=0;i<cnt;i++){
		find_max(i);
	}
	return;
}

int main(){
	cin>>n;
	for(int i=1;i<=n;i++){
		for(int j=1;j<=n;j++){
			cin>>arr[i][j];
			d[i][j]=d[i-1][j]+arr[i][j];
		}
	}
	init();
	solve();
	for(int i=0;i<cnt;i++){			//遍历找答案
		for(int j=1;j<=n;j++){
			_max=max(dp[i][j],_max);
		}
	}
	cout<<_max;
	return 0;
} 
参考资料
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值