调教出属于你的私有大模型——大模型高效微调PEFT介绍

什么是微调?为什么要微调?

微调(Fine-tuning)是深度学习中的一种技术手段,它涉及在已经预训练好的模型基础上,使用特定的数据集进行进一步的训练,以使模型适应特定的任务或领域。这种方法的优势在于可以节省大量的计算资源和时间,因为预训练模型已经学习了大量的通用知识,只需要较小的调整即可适应新任务。

微调的重要性体现在以下几个方面:

  1. 任务适应性:微调可以使通用模型更好地适应特定任务,如文本分类、问答系统或代码生成等。
  2. 领域专业化:通过微调,模型可以学习特定领域的术语、风格和知识,提高其在该领域的表现。
  3. 性能提升:相比于直接使用预训练模型,经过微调的模型通常能在目标任务上取得更好的结果。
  4. 资源效率:微调通常只需要较少的数据和计算资源,比从头训练一个大型模型更加经济实惠。

什么是高效微调PEFT?和全参微调相比有什么好处?

参数高效微调(Parameter-Efficient Fine-Tuning,PEFT)是一种高效的模型微调技术,它允许在不调整预训练模型所有参数的情况下,通过仅微调一小部分参数来适应特定的下游任务,从而显著降低了计算和存储成本。这种方法在保持与全参数微调相当性能的同时,减少了算力支出,加快了模型适应速度,并避免了灾难性遗忘。

PEFT(Parameter-Efficient Fine-Tuning)与全参数微调(Full Fine-Tuning)是两种不同的模型微调方法,它们在目标和实现方式上有所区别。

  • 全参数微调(Full Fine-Tuning)

    1. 全参数微调是对预训练模型的所有参数进行调整,以适应新的任务或数据集。
    2. 这种方法通常需要更多的计算资源和数据,因为模型的每个参数都可能需要根据新任务进行优化。
    3. 它的优点是可以充分利用任务数据来优化模型,但缺点是可能导致过拟合,尤其是在数据量有限的情况下,且计算成本较高。
  • 参数高效微调(PEFT)

    1. PEFT的目标是在保留预训练模型大部分参数不变的情况下,只对模型的一小部分参数进行微调。
    2. 这种方法通过添加少量可训练的参数(如适配器或小型网络模块)来适应新任务,而不是重新训练整个模型。
    3. PEFT的优点在于它可以减少计算资源的消耗,加快训练速度,并有助于避免灾难性遗忘,即新任务的学习不会抹去模型在预训练阶段学到的知识。
    4. 它特别适用于数据量较小的任务,因为它不需要大量的数据来更新大量的参数。

总的来说,PEFT提供了一种更加高效和节省资源的微调方式,尤其适合于资源有限或数据量较小的场景。

PEFT 主流技术分类

从PEFT的技术门类上可以分为additive-增量模型,soft prompt-软提示,adapters适配器,selective-选择性方法,reparameterizeation based-重参数化方法;这五类技术并不是完全独立,因为技术发展过程中也会相互借鉴,不断改进,也有一些微调方法是介于两种中间,或是多种技术的综合如UniPEFT。

additive-增量模型

  • 原理:通过在预训练模型的特定位置添加可学习的模块或参数,以最小化适配下游任务时模型的可训练的参数量。
  • 适用场景:适用于需要对模型进行局部调整以适应新任务的场景,如自然语言处理中的文本分类或图像识别任务。
  • 方法:包括Adapter和Soft Prompt等。Adapter通过在Transformer块内添加小型Adapter层来实现参数高效微调。Soft Prompt通过在输入序列的头部添加可学习的向量来实现参数高效微调。

soft prompt-软提示

  • 原理:软提示是可学习的连续向量,通过梯度优化方法针对特定数据集进行优化。
  • 适用场景:适合于需要自动优化以适应不同任务的场景,如文本生成、机器翻译等。
  • 方法:包括Prefix-tuning和Prompt Tuning。Prefix-tuning通过在每个Transformer层的键、值和查询矩阵前面添加可学习的向量,实现对模型表示的微调。Prompt Tuning仅仅在首个词向量层插入可学习向量,以进一步减少训练参数。

adapters-适配器

  • 原理:适配器技术通过在模型的层之间插入小型的神经网络模块(称为adapters),只训练这些模块的参数,而保持预训练模型的其他部分不变。
  • 适用场景:适用于需要在模型中添加额外表示能力以适应新任务的场景。
  • 方法:Adapter层通过学习降维后的特征,有效地减少了参数数量,同时使用skip-connection技术,即使在最差情况下,Adapter层也可以退化为identity,从而保持模型的稳定性。

selective-选择性方法

  • 原理:选择性方法在微调过程中只更新模型中的一部分参数,而保持其余参数固定。
  • 适用场景:适用于计算资源有限或希望减少模型调整对预训练知识影响的场景。
  • 方法:包括非结构化掩码和结构化掩码技术。非结构化掩码通过在模型参数上添加可学习的二值掩码来确定可以微调的参数。结构化掩码对掩码的形状进行了结构化的限制,以提高效率。

reparameterizeation based-重参数化方法

  • 原理:重参数化方法通过构建预训练模型参数的(低秩的)表示形式用于训练,在推理时,参数将被等价的转化为预训练模型参数结构。
  • 适用场景:适用于需要在保持模型性能的同时减少参数量和计算成本的场景。
  • 方法:包括在Stable Diffusion图像生成领域名声大噪的LoRA(Low-Rank Adaptation)。LoRA通过将权重矩阵分解为两个较低秩的矩阵来减少参数量,从而有效地减少需要更新的参数数量。

PEFT应用案例

PEFT的应用案例广泛,涵盖了自然语言处理、计算机视觉、语音识别等领域。

例如,在自然语言处理领域,使用LoRA方法微调T0_3B模型(3B参数)在Twitter投诉分类任务上,仅使用0.19%的可训练参数就达到了86.3%的准确率,接近人类基准的89.7% 。

在计算机视觉领域,通过LoRA微调Stable Diffusion模型进行图像生成,显著降低了GPU内存的需求,并且最终模型checkpoint的大小仅为8.8MB

PEFT的优势与局限性

PEFT(Parameter-Efficient Fine-Tuning)是一种高效的微调方法,它通过仅调整预训练模型中的一小部分参数来适应新任务,从而减少了计算资源的需求。以下是PEFT的一些优势和可能存在的局限性:

优势:

  1. 计算资源节省: PEFT通过微调少量参数而不是整个模型,显著减少了训练和推理时的计算资源消耗。
  2. 快速适配: 它可以快速适配预训练模型至各类下游任务,使大模型能够迅速适应新的任务需求。
  3. 避免灾难性遗忘: PEFT有助于避免全参数微调中可能出现的灾难性遗忘现象,即模型在适应新任务时遗忘了预训练阶段学到的知识。
  4. 跨领域应用: PEFT技术可以应用于多种大型预训练模型,如LLM、ViT、视觉文本模型以及扩散模型等,提高了模型的适用性。
  5. 系统设计优化: PEFT技术还可以与系统设计相结合,如通过Offsite-Tuning解决数据隐私问题,PetS提供统一的服务框架等,进一步提升了模型部署的效率和安全性。

局限性和挑战:

  1. 数据量需求: PEFT可能需要足够的数据来有效地微调模型,对于数据量较小的任务,其性能提升可能有限。
  2. 参数选择挑战: 如何选择合适的参数进行微调是一个关键问题,不同的任务和模型可能需要不同的参数设置。
  3. 预训练模型质量影响: PEFT的性能可能受到预训练模型质量的影响,如果预训练模型本身性能不佳,PEFT微调的效果可能会受限。
  4. 内存占用问题: 尽管PEFT在训练过程中只更新少量参数,但由于需要进行梯度计算和反向传播,其内存占用仍然较大。
  5. 模型泛化能力: PEFT微调可能会影响模型的泛化能力,特别是在微调过程中可能会引入过拟合的风险。

PEFT技术在提高微调效率和降低资源消耗方面具有明显优势,但也面临着数据量需求、参数选择、预训练模型质量、内存占用和模型泛化能力等挑战。未来的研究可能会集中在如何解决这些局限性,以及如何进一步提升PEFT技术的性能和适用性。

LoRA微调LLaMa-7b模型实例

使用Hugging Face的库来实现LoRA微调LLaMa-7b模型,需要使用transformers库来处理模型和分词器,以及peft库来应用参数高效的微调技术。以下是一个示例代码,演示如何在ADGen数据集上使用LoRA方法微调LLaMa-7b模型。

首先,确保你已经安装了transformerspeft库:

pip install transformers datasets torch

然后,使用以下代码进行微调:

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer
from datasets import load_dataset
from torch.utils.data import Dataset

# 定义ADGen数据集的加载和预处理
class ADGenDataset(Dataset):
    def __init__(self, tokenizer, texts, labels, max_length):
        self.encodings = tokenizer(texts, truncation=True, padding=True, max_length=max_length)
        self.labels = labels

    def __getitem__(self, idx):
        item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
        item['labels'] = torch.tensor(self.labels[idx])
        return item

    def __len__(self):
        return len(self.labels)

# 加载ADGen数据集
texts = [...]  # 你的文本数据
labels = [...]  # 你的标签数据
max_length = 512

tokenizer = AutoTokenizer.from_pretrained("llama-7b", use_fast=True)
dataset = ADGenDataset(tokenizer, texts, labels, max_length)

# 定义训练参数
training_args = TrainingArguments(
    output_dir="./llama-7b-adgen",
    evaluation_strategy="epoch",
    learning_rate=2e-5,
    per_device_train_batch_size=16,
    per_device_eval_batch_size=16,
    num_train_epochs=3,
    weight_decay=0.01,
)

# 加载支持LoRA的LLaMa模型
model = AutoModelForCausalLM.from_pretrained("llama-7b", lora=True, lora_ranks=4)

# 创建Trainer对象
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=dataset,
    tokenizer=tokenizer,
)

# 微调模型
trainer.train()

# 评估模型
trainer.evaluate()

PEFT未来展望

参数高效微调(PEFT)技术在大模型微调领域的未来发展趋势可以从以下几个方面进行探讨:

  1. 统一的评测基准:目前PEFT技术虽然在多个下游任务中取得了成功,但缺乏一个全面的基准来公平比较不同PEFT方法的效果和效率。未来的研究可能会致力于建立一个公认的基准,以促进社区内的创新和合作。

  2. 增强训练效率:PEFT在训练过程中,其可训练参数量并不总是与训练过程中的计算和内存节省一致。未来的研究可以进一步探索优化内存和计算效率的方法。

  3. 探索扩展定律:许多PEFT技术都是在较小的Transformer模型上实现的,而其有效性不一定适用于如今的各种大参数量模型。未来的研究可以探索如何适应大型模型的PEFT方法。

  4. 服务更多模型和任务:随着更多大型模型的出现,如Sora、Mamba等,PEFT技术可以解锁新的应用场景。未来的研究可以关注为特定模型和任务设计PEFT方法。

  5. 增强数据隐私:在服务或微调个性化PEFT模块时,中心化系统可能面临数据隐私问题。未来的研究可以探索加密协议来保护个人数据和中间训练/推理结果。

  6. PEFT与模型压缩:模型压缩技术如剪枝和量化对PEFT方法的影响尚未得到充分研究。未来的研究可以关注压缩后的模型如何适应PEFT方法的性能。

  7. 跨模态学习:PEFT技术在不同领域的应用,如LLM、视觉Transformer(ViT)、视觉文本模型以及扩散模型,将是一个重要的研究方向。未来的研究可能会探索如何设计更优的PEFT方法以提升特定模型或任务的性能。

  8. 系统设计挑战:基于云服务的PEFT系统所面临的挑战,如集中式PEFT查询服务、分布式PEFT查询服务、多PEFT训练等,也是未来研究的重要方向。研究者可能会探索如何更有效地管理和调度PEFT模块,以及如何设计有效的内核来批量训练PEFT。

  9. 新技术和方法:随着AI技术的快速发展,未来可能会出现新的PEFT技术和方法,例如通过结合神经网络剪枝技术和PEFT技术来进一步提升效率,或者通过降低模型精度来减少模型大小,从而提高计算效率。

这些发展趋势表明,PEFT技术在未来将更加注重效率、适应性、跨模态学习、模型压缩和低资源任务的支持,同时也将面临系统设计和数据隐私等方面的挑战。随着研究的深入,PEFT技术有望在大模型微调领域发挥更大的作用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值