海量数据相似度搜索,如相似的网页、图像、文章、query 等相似性搜索

本文介绍了局部敏感哈希(LSH)的基本原理及其应用场景,包括网页、文章、图像及音乐的相似性搜索。同时详细解释了SimHash算法的实现过程,并对比了MinHash与SimHash的区别。

参考资料:
https://blog.csdn.net/icvpr/article/details/12342159 局部敏感哈希(Locality-Sensitive Hashing, LSH)方法介绍
http://grunt1223.iteye.com/blog/964564 simhash与重复信息识别
http://www.07net01.com/2015/08/907327.html minHash(最小哈希)和LSH(局部敏感哈希)
https://my.oschina.net/u/347386/blog/749891 相关文章汇总
https://blog.csdn.net/dm_ustc/article/details/45626907 MinHash与SimHash(讲区别和应用)

这里主要介绍一个方法:
LSH(局部敏感哈希)

LSH的基本思想是:将原始数据空间中的两个相邻数据点通过相同的映射或投影变换后,这两个数据点在新的数据空间中仍然相邻的概率很大,而不相邻的数据点被映射到同一个桶的概率很小。

也就是说,如果我们对原始数据进行一些hash映射后,我们希望原先相邻的两个数据能够被hash到相同的桶内,具有相同的桶号。

LSH 的具体描述请跳转上面参考文章,主要再复述一下基于LSH 的海量数据相似的网页、图像、文章、query 等相似性搜索方法:

LSH的应用场景很多,凡是需要进行大量数据之间的相似度(或距离)计算的地方都可以使用LSH来加快查找匹配速度,下面列举一些应用:

(1)查找网络上的重复网页

互联网上由于各式各样的原因(例如转载、抄袭等)会存在很多重复的网页,因此为了提高搜索引擎的检索质量或避免重复建立索引,需要查找出重复的网页,以便进行一些处理。其大致的过程如下:将互联网的文档用一个集合或词袋向量来表征,然后通过一些hash运算来判断两篇文档之间的相似度,常用的有minhash+LSH、simhash。

(2)查找相似新闻网页或文章

与查找重复网页类似,可以通过hash的方法来判断两篇新闻网页或文章是否相似,只不过在表达新闻网页或文章时利用了它们的特点来建立表征该文档的集合。

(3)图像检索

在图像检索领域,每张图片可以由一个或多个特征向量来表达,为了检索出与查询图片相似的图片集合,我们可以对图片数据库中的所有特征向量建立LSH索引,然后通过查找LSH索引来加快检索速度。

(4)音乐检索

对于一段音乐或音频信息,我们提取其音频指纹(Audio Fingerprint)来表征该音频片段,采用音频指纹的好处在于其能够保持对音频发生的一些改变的鲁棒性,例如压缩,不同的歌手录制的同一条歌曲等。为了快速检索到与查询音频或歌曲相似的歌曲,我们可以对数据库中的所有歌曲的音频指纹建立LSH索引,然后通过该索引来加快检索速度。

(5)指纹匹配

一个手指指纹通常由一些细节来表征,通过对比较两个手指指纹的细节的相似度就可以确定两个指纹是否相同或相似。类似于图片和音乐检索,我们可以对这些细节特征建立LSH索引,加快指纹的匹配速度。

主要还涉及的几个概念:
simHash:(详见 http://www.lanceyan.com/tech/arch/simhash_hamming_distance_similarity.html
步骤:
1、分词,去噪,加权重:
我们假设权重分为5个级别(1~5)。比如:“ 美国“51区”雇员称内部有9架飞碟,曾看见灰色外星人 ” ==> 分词后为 “ 美国(4) 51区(5) 雇员(3) 称(1) 内部(2) 有(1) 9架(3) 飞碟(5) 曾(1) 看见(3) 灰色(4) 外星人(5)”,括号里是代表单词在整个句子里重要程度,数字越大越重要。

2、hash:通过hash算法把每个词变成hash值,比如“美国”通过hash算法计算为 100101,“51区”通过hash算法计算为 101011。

3、乘以权中,通过 2步骤的hash生成结果,需要按照单词的权重形成加权数字串,比如“美国”的hash值为“100101”,通过加权计算为“4 -4 -4 4 -4 4”;“51区”的hash值为“101011”,通过加权计算为 “ 5 -5 5 -5 5 5”。

4、合并,把上面各个单词算出来的序列值累加,变成只有一个序列串。比如 “美国”的 “4 -4 -4 4 -4 4”,“51区”的 “ 5 -5 5 -5 5 5”, 把每一位进行累加, “4+5 -4+-5 -4+5 4+-5 -4+5 4+5” ==》 “9 -9 1 -1 1 9”。这里作为示例只算了两个单词的,真实计算需要把所有单词的序列串累加。

5、降维,把4步算出来的 “9 -9 1 -1 1 9” 变成 0 1 串,形成我们最终的simhash签名。 如果每一位大于0 记为 1,小于0 记为 0。最后算出结果为:“1 0 1 0 1 1”。

这里写图片描述
特征权重,对于文本而言的话,可以用 TF-IDF 。

minHash:(详见 http://www.07net01.com/2015/08/907327.html
步骤:
1. 构建集合特征矩阵
2. 对特征矩阵的行进行随机打乱
3. 某一列的最小哈希值就等于打乱后的这一列第一个值为1的行所在的行号

LSH 中常见的距离:

  1. Jaccard distance (交集 / 并集)
    Jaccard distance: (1 - Jaccard similarity),而Jaccard similarity = (A intersection B) / (A union B),Jaccard similarity通常用来判断两个集合的相似性。
    Jaccard distance对应的 LSH hash function为:minhash,其是(d1,d2,1-d1,1-d2)-sensitive的。

  2. Hamming distance (汉明距离)
    Hamming distance: 两个具有相同长度的向量中对应位置处值不同的次数。
    Hamming distance对应的LSH hash function为:H(V) = 向量V的第i位上的值,其是(d1,d2,1-d1/d,1-d2/d)-sensitive 的。
    simHash 也是一种 Hamming distance对应的 LSH hash function 。(猜的)

  3. Cosine distance
    Cosine distance:cos(theta) = A·B / |A||B| ,常用来判断两个向量之间的夹角,夹角越小,表示它们越相似。
    Cosine distance对应的LSH hash function为:H(V) = sign(V·R),R是一个随机向量。V·R可以看做是将V向R上进行投影操作。其是(d1,d2,(180-d1)180,(180-d2)/180)-sensitive的。

  4. normal Euclidean distance
    Euclidean distance是衡量D维空间中两个点之间的距离的一种距离度量方式。

<think>好的,我现在需要帮助用户寻找关于图像搜索引擎的开发与实现的信息。首先,我应该先理解用户的需求。用户提到了图像搜索引擎的开发、实现以及图片搜索技术,并且引用了三个参考资料,其中两个涉及使用Python、CLIP和FAISS库,还有一个提到搜索引擎广告。不过用户的主要需求是关于技术实现的,所以可能需要聚焦在引用1和引用2的内容上。 首先,用户提供的引用1提到了使用Python实现基于图像识别的图片搜索引擎爬虫,并介绍了图像搜索的应用场景。引用2详细说明了使用CLIP模型和FAISS库进行相似性搜索的具体步骤。引用3虽然关于广告,但可能暂时不相关,除非用户后续有推广需求,但当前问题主要集中在技术实现上。 接下来,我需要整理图像搜索引擎开发的主要步骤。根据引用1和引用2,大致流程可能包括数据采集、特征提取、索引构建和搜索匹配。数据采集部分需要爬虫技术,但用户可能已经了解这一点,因为引用1提到了爬虫的实现。特征提取部分,CLIP模型是一个多模态模型,能将图像和文本映射到同一向量空间,非常适合用于图像搜索。然后使用FAISS库进行高效的向量相似性搜索,这是Meta开发的高效库,适合处理大规模数据。 在用户的问题中,可能需要更详细的技术实现步骤,比如如何预处理图像,如何使用CLIP生成特征向量,如何用FAISS建立索引,以及如何进行查询。此外,用户可能关心代码示例,像引用2中提到的代码实现部分,可能需要给出具体的代码片段,比如加载CLIP模型、处理图像、构建FAISS索引等。 另外,需要考虑用户可能的疑问,比如不同技术的优缺点,比如为什么选择CLIP而不是其他模型,或者FAISS相比其他数据库的优势。还有可能涉及性能优化,如何处理大规模数据,实时搜索的延迟等问题。 然后,根据用户提供的示例回答结构,需要包含实现步骤、技术要点、代码示例和相关问题。代码示例部分需要确保使用正确的格式,并符合LaTeX排版要求,数学公式用$...$,独立公式用$$...$$。同时,需要生成相关问题,如优化方法、应用场景、技术对比等。 现在,检查是否有遗漏的要点。比如,是否需要提到数据存储和管理,比如数据库的选择?或者是否需要考虑前端展示搜索结果的界面?不过根据引用内容,可能主要集中在后端技术,特别是特征提取和相似性搜索部分。 另外,需要确保引用标记正确,每个引用对应的内容在回答中正确标注,比如引用1和引用2分别对应爬虫和CLIP+FAISS的实现。 最后,生成相关问题需要考虑用户可能的后续疑问,比如性能优化、技术对比、应用扩展等。例如,如何提升搜索速度,如何处理高维向量,或者如何结合文本搜索等。 总结,回答的结构应该是: 1. 概述图像搜索引擎的基本原理和流程。 2. 分步骤讲解开发流程,包括数据采集、特征提取、索引构建、搜索匹配。 3. 技术要点,如CLIP模型、FAISS库的作用。 4. 代码示例,展示关键步骤的实现。 5. 相关问题,引导用户深入探讨。 需要确保内容符合用户的要求,使用中文,正确引用,并且代码格式正确。同时,检查是否有系统级指令中提到的LaTeX格式要求,例如行内公式是否正确使用$...$,独立公式是否用$$...$$并单独成段。在回答中提到的数学公式,比如向量空间中的距离计算,可能需要用LaTeX表示,例如余弦相似度公式:$\cos(\theta) = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|}$。 现在,确认所有引用都正确对应,比如引用1是关于爬虫和图像搜索的应用,引用2是CLIP+FAISS的具体实现,引用3是广告部分可能暂时不需要涉及。确保在回答中引用标记正确放置,例如在提到爬虫时引用[^1],在提到CLIP和FAISS时引用[^2]。 可能还需要补充一些技术细节,比如使用CLIP将图像编码为向量,FAISS进行近似最近邻搜索,以及整个系统的工作流程。同时,代码示例需要展示如何加载模型,处理图像,构建索引,执行查询等步骤,确保语法正确,并用Python的代码块展示。 最后,生成的相关问题需要围绕开发中的挑战、优化方法、技术选型比较、应用场景扩展等方面,帮助用户进一步探索。</think>### 图像搜索引擎的开发与实现 图像搜索引擎的核心是通过提取图像特征并建立索引,实现高效的内容相似性搜索。以下是实现流程与技术要点: --- #### 一、实现步骤 1. **数据采集与预处理** - 使用爬虫技术采集互联网上的图像数据,需遵守网站协议。 - 对图像进行标准化处理(如缩放至统一尺寸、归一化像素值)。 2. **特征提取(图像编码)** - 使用多模态模型(如CLIP)将图像映射到高维向量空间。例如,CLIP可将图像和文本编码为同一空间的向量,便于跨模态搜索。 - 数学表达:若图像$I$经CLIP编码为向量$\mathbf{v}_I$,则相似性可通过余弦距离衡量: $$ \cos(\theta) = \frac{\mathbf{v}_I \cdot \mathbf{v}_Q}{\|\mathbf{v}_I\| \|\mathbf{v}_Q\|} $$ 其中$\mathbf{v}_Q$为查询向量。 3. **索引构建** - 使用FAISS库对特征向量建立索引,支持高效的近似最近邻搜索(ANN)。FAISS通过量化、树结构等方法优化大规模向量检索[^2]。 4. **搜索与排序** - 输入查询(图像或文本),提取其向量后,通过FAISS检索相似向量并返回对应图像。 --- #### 二、技术要点与代码示例 1. **特征提取(CLIP模型)** ```python import torch from PIL import Image from transformers import CLIPProcessor, CLIPModel # 加载预训练模型 model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32") # 图像编码 image = Image.open("image.jpg") inputs = processor(images=image, return_tensors="pt", padding=True) image_embedding = model.get_image_features(**inputs) ``` 2. **构建FAISS索引** ```python import faiss import numpy as np # 假设所有图像特征已存储在embeddings数组中(shape: [N, D]) embeddings = np.array([...], dtype=np.float32) dimension = embeddings.shape[1] # 创建索引并添加数据 index = faiss.IndexFlatL2(dimension) # 使用L2距离 index.add(embeddings) ``` 3. **相似性搜索** ```python # 输入查询向量query_embedding(shape: [1, D]) k = 10 # 返回前10个结果 distances, indices = index.search(query_embedding, k) ``` --- #### 三、优化方向 1. **性能优化** - 使用`IndexIVFFlat`加速搜索(通过聚类减少计算量)。 - 量化技术(如PQ)压缩向量,降低内存占用[^2]。 2. **多模态扩展** - 支持文本+图像混合查询(CLIP原生支持)。 3. **分布式部署** - 分片索引以支持海量数据(如Faiss的`IndexShards`)。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值