1、D. Blue-Red Permutation
题意
给了你 一个大小为n的数组,没个位置都有一个数字和一个颜色,如果这个地方的颜色为红色, 那么这个位置的数字可以+1,如果为蓝色,那么这个地方的颜色可以-1,现在问你是否可以让这个数组中的数字都是1~n,并且只出现过一次。
思路
首先对于能够增加的数字,我们肯定希望他是能够组成……n-3、n-2、n-1、n的,对于能够减的数字,我们是希望它最后是能够组成1、2、3……,那么我们将红色的数字和蓝色的数字分别放进两个容器,单独对他们进行改变,我们对红色的数字进行从小到大进行排序,对于蓝色的数字我们从大到小进行排序,然后单独的对他们进行判断。
#include <bits/stdc++.h>
#define int long long
using namespace std;
const int N = 2e5 + 10;
int n;
int a[N];
string s;
void solve()
{
cin >> n;
for (int i = 1; i <= n ; i++) cin >> a[i];
cin >> s; s = " " + s;
vector<int> v[2];
for (int i = 1; i <= n; i ++)
{
if (s[i] == 'B') v[0].push_back(a[i]);
else v[1].push_back(a[i]);
}
sort(v[0].begin(), v[0].end());
sort(v[1].begin(), v[1].end());
for (int i = 0; i < v[0].size(); i ++)
if (v[0][i] < i + 1) { cout << "NO" << endl; return ; }
for (int i = v[1].size() - 1, t = n; i >= 0; i --, t --)
if (v[1][i] > t) { cout << "NO" << endl; return ;}
cout << "YES" << endl;
}
signed main()
{
std::ios::sync_with_stdio(false);
int t; cin >> t;
while (t --) solve();
return 0;
}