计算机毕设分享 基于机器学习SVM的行人检测实现

本文介绍了如何使用HOG+SVM算法进行行人检测,包括Python和OpenCV的代码示例,MATLAB中的HOG特征提取以及模糊PID控制仿真。项目还包括服务器代码、Android应用和STM32下位机程序,适合课程设计或毕业设计参考,源码在GitHub上有分享。
摘要由CSDN通过智能技术生成


前言

基于机器学习SVM的行人检测实现

提示:适合用于课程设计或毕业设计,工作量达标,源码开放


项目说明

1.HOG+SVM行人检测
基于python和opencv编写的代码,应用经典的HOG+SVM算法实现行人检测
目录说明:

  1. Negative:负样本数据集;
  2. Positive:正样本数据集;
  3. TestData:测试数据集;
  4. pedestran_detect.py:使用HOG+SVM进行训练+测试代码。

2.matlab
HOG特征提取演示和模糊PID仿真
目录说明:
hog:HOG特征提取
Simulation:PID控制仿真,模糊推理系统,模糊PID控制仿真

3.server
服务器的代码,大多数文件是测试学习用,关键代码在SocketsDemo和TKinterTest文件夹中
模型和训练数据太大,不上传。

4.app
Android项目

5.stm32
下位机程序

工程

项目分享 :
https://gitee.com/asoonis/htw

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值