无人驾驶之硬件平台详解

本文是无人驾驶技术系列的第十篇,着重介绍无人驾驶硬件平台设计。无人驾驶硬件系统是多种技术、多个模块的集成,主要包括:传感器平台、计算平台、以及控制平台。本文将详细介绍这三个平台以及现有的解决方案。希望本文对无人驾驶从业者以及爱好者选择硬件的时候有帮助。 无人驾驶: 复杂系统 无人驾驶技术是多个...

2019-01-30 14:15:26

阅读数 538

评论数 0

强化学习之原理详解、算法流程及Python代码

开头先附上强化学习(reinforcement learning)的学习视频:https://morvanzhou.github.io/tutorials/machine-learning/reinforcement-learning/,赶紧进行强化学习吧! 1.强化学习就是程序或智能体(age...

2019-01-25 16:58:54

阅读数 307

评论数 0

【机器学习】梯度提升树(GBDT)的原理小结

        在集成学习之Adaboost算法原理小结中,我们对Boosting家族的Adaboost算法做了总结,本文就对Boosting家族中另一个重要的算法梯度提升树(Gradient Boosting Decison Tree, 以下简称GBDT)做一个总结。GBDT有很多简称,有GBT...

2019-01-16 10:34:26

阅读数 137

评论数 0

车道线检测参考学习资料

一、GitHub: https://github.com/amusi/awesome-lane-detection(全) https://github.com/ChengZhongShen/Advanced_Lane_Lines https://github.com/MaybeShewill...

2018-12-04 19:02:42

阅读数 562

评论数 0

基于Spatial CNN的车道线检测和交通场景理解

SCNN车道线检测--(SCNN)Spatial As Deep: Spatial CNN for Traffic Scene Understanding(论文解读) Spatial As Deep: Spatial CNN for Traffic Scene Understanding 收录...

2018-11-20 18:25:16

阅读数 2080

评论数 4

Python初学者之TypeError: unhashable type: 'list'问题分析

使用Python实现机器学习k-近邻算法,创建数据集和标签时,出现了“TypeError: unhashable type: 'list'”错误,无法正确打印出group和labels。 1、错误代码与错误信息 具体代码实例如下: from numpy import * import op...

2018-07-28 14:18:11

阅读数 29086

评论数 3

【机器学习】K-Means算法的原理流程、代码实现及优缺点

通过机器学习教学视频,初识KNN算法,对原理和算法流程通过小应用进行Python实现,有了自己的一些理解。因此在此整理一下,既是对自己学习的阶段性总结,也希望能和更多的朋友们共同交流学习相关算法,如有不完善的地方欢迎批评指正。1、K-Means算法原理DT,全称Decision Trees,即常说...

2018-07-14 16:53:49

阅读数 3224

评论数 0

【机器学习】最近邻算法KNN原理、流程框图、代码实现及优缺点

通过机器学习教学视频,初识K-Means算法,对原理公式推导、Python代码实现部分小程序,有了一些自己的理解。因此在此整理一下,既是对自己学习的阶段性总结,也希望能和更多的朋友们共同交流学习相关算法,如有不完善的地方欢迎批评指正。前后花费3天时间,不断修改,完善后才发出来,转载请注明出处,谢谢...

2018-07-14 12:57:20

阅读数 2419

评论数 0

【智能驾驶】领域常见专业名称英文缩写

随着人工智能技术的兴起,掀起了无人驾驶行业的热潮,国内外无论高校、企业还是科研院所都投入了巨大的人力物力进行相关技术的研发。博主在阅读文献和看车企、ADAS公司产品介绍时,常会出现很多专业名称缩写,包括一些车型配置单中也常提起,下面就概括性地进行介绍,对刚入智能驾驶领域的童鞋们进行科普。   ...

2018-06-22 19:39:58

阅读数 2485

评论数 0

基于OpenCV的findContours查找图像连通域,并进行排序

#include <opencv2/legacy/legacy.hpp> #include <opencv2/opencv.hpp> #include <vector&...

2018-06-21 09:07:19

阅读数 2140

评论数 0

【OpenCV】8邻域种子填充法剔除短连通域的高效算法

//本文档参考种子填充算法描述及C++代码实现(https://www.bbsmax.com/A/amd0AVWzge/)讲解的原理,实现快速种子填充算法,运行效果高。 //具体功能如下:依次扫描每个像素,检测8领域,寻找连通域,删掉面积小于阈值的。 #include <...

2018-06-19 19:53:11

阅读数 896

评论数 14

【机器学习】LBP+SVM实现特征检测

初步学习机器学习,参考HOG SVM 车辆检测(https://www.cnblogs.com/louyihang-loves-baiyan/p/4658478.html)、LBP特征原理(https://blog.csdn.net/q1007729991/article/details/5299...

2018-06-16 11:17:17

阅读数 1615

评论数 0

【Pytorch】ResNet-18实现Cifar-10图像分类

一、ResNet-18网络结构 ResNet全名Residual Network残差网络。Kaiming He 的《Deep Residual Learning for Image Recognition》获得了CVPR最佳论文。他提出的深度残差网络在2015年可以说是洗刷了图像方面...

2019-04-23 23:32:28

阅读数 68

评论数 0

一网打尽深度学习之卷积神经网络的经典网络(LeNet-5、AlexNet、ZFNet、VGG-16、GoogLeNet、ResNet)

看过的最全最通俗易懂的卷积神经网络的经典网络总结,在此分享,供更多人学习。 一、CNN卷积神经网络的经典网络综述 下面图片参照博客:http://blog.csdn.net/cyh_24/article/details/51440344 二、LeNet-5网络 输入尺寸...

2019-04-22 23:11:07

阅读数 110

评论数 1

详解可微神经网络架构搜索框架(DNAS)

【论文】FBNet: Hardware-Aware Efficient ConvNet Design via Differentiable Neural Architecture Search 【地址】https://arxiv.org/pdf/1812.03443 关键思想: 将Loss函数...

2019-04-19 22:16:44

阅读数 118

评论数 0

Windows下如何安装和使用git

git到底是个什么东西,我这里就不介绍了,如果大家还有不懂的,可以去百度一下的。我这里给一个介绍的网址:git简介 这里在留一个地址http://baike.baidu.com/subview/1531489/12032478.htm#viewPageContent 如果大家没有安装包,也可以到...

2019-04-17 23:31:16

阅读数 33

评论数 0

解读高效的神经架构搜索ENAS

1. 简介 神经架构搜索(NAS)已成功用来设计图像分类和语言建模模型架构 (Zoph & Le, 2017; Zoph et al., 2018; Cai et al., 2018; Liu et al., 2017; 2018)。在 NAS 中,RNN 控制器进行循环训练...

2019-04-17 23:16:33

阅读数 100

评论数 0

详解随机神经网络结构搜索 (SNAS)

本文出自商汤研究院(SenseTime Research)。原论文发表于ICLR 2019,及arXiv:1812.09926 神经网络结构搜索(Neural Architecture Search, NAS)是自动机器学习(AutoML)中的热点问题之一。通过设计经济高效的搜索方法,自动获得泛...

2019-04-17 23:14:29

阅读数 179

评论数 0

【深度学习】语音识别之CTC算法原理解释与公式推导

不搞语音识别得人开这个论文确实有点费劲,结合上图,思考一下语音识别的场景,输入是一段录音,输出是识别的音素, 输入的语音文件的长度和输出的音素个数之间没有一一对应关系,通常将语音文件「分片」之后,会出现多对一的关系。这个场景在「翻译问题」和「OCR问题」中也普遍存在。 本文的特点是,提出来一种e...

2019-02-28 23:00:39

阅读数 112

评论数 0

【Hadoop】快速入门与搭建完全分布式Hadoop的步骤

一、Hadoop快速入门 支持平台 GNU/Linux是产品开发和运行的平台。 Hadoop已在有2000个节点的GNU/Linux主机组成的集群系统上得到验证。 Win32平台是作为开发平台支持的。由于分布式操作尚未在Win32平台上充分测试,所以还不作为一个生产平台被支持。 所需软件...

2019-02-28 17:23:57

阅读数 48

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭