【OCR】ocr改shape

reader里datashape从[160,32]改为[640,32],则

class CRNN:
    def __init__(self, data, label, rnnSeqLengths, rnnBatch, conf, isTraining, keepProb, reuse):
        self.data = data
        self.label = label
        self.rnnSeqLengths = rnnSeqLengths
        self.rnnBatch = rnnBatch
        self.conf = conf
        self.isTraining = isTraining
        self.keepProb = keepProb
        net = DenseNet(self.data, 2, 12, self.isTraining, dropout=1-self.keepProb, reuse=reuse).model
        net = tf.transpose(net, perm=[0, 2, 1, 3])
        # self.word_vec = tf.reshape(net, [1, -1, 1584])
        self.word_vec = tf.reshape(net, [-1, 20, 816])
        #print 'self.word_vec', self.word_vec.shape
        self.lstmLayers(reuse=reuse)

 

改为:

class CRNN:
    def __init__(self, data, label, rnnSeqLengths, rnnBatch, conf, isTraining, keepProb, reuse):
        self.data = data
        self.label = label
        self.rnnSeqLengths = rnnSeqLengths
        self.rnnBatch = rnnBatch
        self.conf = conf
        self.isTraining = isTraining
        self.keepProb = keepProb
        net = DenseNet(self.data, 2, 12, self.isTraining, dropout=1-self.keepProb, reuse=reuse).model
        net = tf.transpose(net, perm=[0, 2, 1, 3])
        # self.word_vec = tf.reshape(net, [1, -1, 1584])
        self.word_vec = tf.reshape(net, [-1, 80, 816])
        #print 'self.word_vec', self.word_vec.shape
        self.lstmLayers(reuse=reuse)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值