pytorch中的权值初始化方法

本文介绍了PyTorch中常见的深度学习参数初始化方法,如均匀分布、正态分布、常数、一值和零值等,还包括了Xavier和Kaiming初始化,以及它们在不同激活函数下的应用。理解并掌握这些初始化方法对于模型收敛和性能至关重要。
摘要由CSDN通过智能技术生成

1. 常用的初始化方法


1.1 均匀分布初始化(uniform_)

使值服从均匀分布 U(a,b)

torch.nn.init.uniform_(tensor, a=0.0, b=1.0)
复制代码
  • tensor——一个n维的torch.Tensor
  • a – 均匀分布的下界
  • b – 均匀分布的上限

1.2 正态分布初始化(normal_)

使值服从正态分布 N(mean, std),默认值为 0,1

torch.nn.init.normal_(tensor, mean=0.0, std=1.0)
复制代码
  • tensor——一个n维的torch.Tensor
  • mean – 正态分布的均值
  • std – 正态分布的标准偏差

1.3 常数初始化(constant_)

使值为常数,用val来填充

torch.nn.init.constant_(tensor, val)
复制代码
  • tensor——一个n维的torch.Tensor
  • val – 用来填充张量的值

1.4 一值初始化(ones_)

用1来填充tensor

torch.nn.init.ones_(tensor)
复制代码

1.5 零值初始化(zeros_)

用0来填充tensor

torch.nn.init.zeros_(tensor)
复制代码

1.6 单位矩阵初始化(eye_)

将二维 tensor 初始化为单位矩阵

torch.nn.init.eye_(tensor)
复制代码

1.7 狄拉克初始化(dirac_)

用Dirac δ函数来填充{3, 4, 5}维输入张量或变量。在卷积层尽可能多的保存输入通道特性。在groups >1的情况下,每组通道保持身份

torch.nn.init.dirac_(tensor, groups=1)
复制代码
  • tensor – {3, 4, 5} 维torch.Tensor
  • groups (optional) – conv 层中的组数(默认值:1)

1.8 正交初始化(orthogonal_)

使得 tensor 是正交的

torch.nn.init.orthogonal_(tensor, gain=1)
复制代码

1.9 稀疏初始化(sparse_)

从正态分布 N~(0. std)中进行稀疏化,使每一个 column 有一部分为 0

torch.nn.init.sparse_(tensor, sparsity, std=0.01)
复制代码
  • tensor——一个n维的torch.Tensor
  • sparsity - 每列中要设置为零的元素的比例
  • std – 用于生成非零值的正态分布的标准偏差

1.10 Xavier初始化

Xavier 初始化方法,论文在《Understanding the difficulty of training deep feedforward neural networks》。公式推导是从“方差一致性”出发,初始化的分布有均匀分布和正态分布两种。

1.10.1 Xavier均匀分布(xavier_uniform_)

torch.nn.init.xavier_uniform_(tensor, gain=1.0)
复制代码

xavier 初始化方法中服从均匀分布 U(−a,a) ,分布的参数 a = gain * sqrt(6/fan_in+fan_out), 这里有一个 gain,增益的大小是依据激活函数类型来设定

eg:

nn.init.xavier_uniform_(w, gain=nn.init.calculate_gain('relu'))
复制代码

1.10.2 Xavier正态分布(xavier_normal_)

torch.nn.init.xavier_normal_(tensor, gain=1.0)
复制代码

xavier 初始化方法中服从正态分布,mean=0,std = gain * sqrt(2/fan_in + fan_out)

1.11 kaiming初始化

kaiming 初始化方法,论文在《 Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification 》,公式推导同样从“方差一致性”出法,kaiming是针对 xavier 初始化方法在 relu 这一类激活函数表现不佳而提出的改进

1.11.1 kaiming均匀分布(kaiming_uniform_)

torch.nn.init.kaiming_uniform_(tensor, a=0, mode='fan_in', nonlinearity='leaky_relu')
复制代码
  • tensor——一个n维的torch.Tensor
  • a – 为激活函数的负半轴的斜率(仅与“leaky_relu”一起使用),relu 是 0
  • mode——“fan_in”(默认)或“fan_out”。 选择“fan_in”会保留前向传递中权重方差的大小。 选择“fan_out”会保留向后传递的幅度。
  • nonlinearity – 非线性函数(nn.functional 名称),建议仅与 'relu' 或 'leaky_relu'(默认)一起使用。

此为均匀分布,U~(-bound, bound), bound = sqrt(6/(1+a^2)*fan_in)

1.11.2 kaiming正态分布(kaiming_normal_)

torch.nn.init.kaiming_normal_(tensor, a=0, mode='fan_in', nonlinearity='leaky_relu')
复制代码
  • tensor——一个n维的torch.Tensor
  • a – 为激活函数的负半轴的斜率(仅与“leaky_relu”一起使用),relu 是 0
  • mode——可选为 fan_in 或 fan_out, fan_in 使正向传播时,方差一致;fan_out 使反向传播时,方差一致
  • nonlinearity – 非线性函数(nn.functional 名称),建议仅与 'relu' 或 'leaky_relu'(默认)一起使用。

此为 0 均值的正态分布,N~ (0,std),其中 std = sqrt(2/(1+a^2)*fan_in)

eg:

nn.init.kaiming_normal_(w, mode='fan_out', nonlinearity='relu')
复制代码

1.12 计算增益

torch.nn.init.calculate_gain(nonlinearity, param=None)
复制代码
  • nonlinearity–非线性函数(nn.functional name)
  • param–非线性函数的可选参数

返回给定非线性函数的推荐增益值。这些值如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值