机器学习之决策树

目录

一、决策树的介绍

二、决策树的原理

三、决策树的构建

数据预处理

特征选择

构建决策树

剪枝处理

四、决策树的实例

预测信用卡欺诈

五、总结


一、决策树的介绍

决策树是一种基本的分类与回归方法,它主要是一种监督学习算法。这种方法采用树形结构,其中每个内部节点表示一个属性上的判断条件,每个分支代表一个判断结果的输出,而每个叶节点则代表一个类别。决策树算法通过对训练数据的分析来学习决策规则,从而建立一个决策树模型,用于对新数据进行分类或预测。

二、决策树的原理

决策树的基本原理是将数据集分成多个小的子集,每个子集都对应一个决策节点,最终形成一棵树状结构。这个树状结构用于对数据进行分类或回归预测。在树的构建过程中,每个内部节点表示一个属性上的判断条件,根据这个条件将样本分配到不同的子节点中。这个过程一直递归进行,直到满足某个终止条件为止,此时形成叶节点,代表最终的决策结果或预测值。

三、决策树的构建

  • 数据预处理

    • 数据清洗:此步骤旨在去除数据中的缺失值、异常值和重复值等无效数据。对于缺失值,可以采取填充(如均值填充、中位数填充等)、插值或删除包含缺失值的记录等方法进行处理。异常值则可以根据其特性进行识别并处理,如删除或替换为正常值。
    • 特征选择:从原始特征中选择出最具有代表性的特征,即那些对分类或预测结果影响最大的特征。这通常基于统计测试、领域知识或特征的重要性评估等方法。
    • 特征转换:有时原始特征可能不适合直接用于构建决策树,因此需要进行转换。例如,对于连续型特征,可以将其离散化(如分箱操作);对于高维特征,可以通过降维技术进行处理。

  • 特征选择

    在构建决策树时,需要选择一个合适的划分属性。这个属性应该能够将样本集合划分成不同的类别,并且使得每个类别内部相似度较高,不同类别之间相似度较低。常用的特征选择方法有信息增益、信息增益比和基尼指数等。这些方法通过计算不同特征的信息增益或基尼指数来评估其重要性,从而选择出最优的划分属性。
  1. 信息增益(Information Gain):这是决策树算法中常用的特征选择准则。它衡量的是选择某个特征作为划分属性时,所能带来的数据集纯度的提升程度。信息增益越大,说明使用该特征划分数据集后所获得的“纯度提升”越大。

  2. 信息增益比(Gain Ratio):增益率是对信息增益的一个改进,它考虑了特征取值数量的影响。当特征的取值数量较多时,信息增益可能会偏大,而增益率通过引入一个惩罚项来修正这一问题。

  3. 基尼指数(Gini Index):基尼指数也是决策树算法中常用的特征选择准则,尤其在CART(Classification and Regression Trees)算法中。它衡量的是数据的纯度或不纯度,值越小纯度越高,因此在选择划分特征时,会选择使得划分后基尼指数最小的特征。

  • 构建决策树

    • 样本划分:根据选定的特征将数据集进行划分,生成子节点。每个子节点对应一个特征值的取值范围或具体值。
    • 递归构建:对每个子节点重复上述过程,即继续选择特征进行划分,直到满足停止条件为止。停止条件通常包括所有样本属于同一类别、所有特征都已被使用或达到预设的树的最大深度等。

  • 剪枝处理

    • 预剪枝:在决策树构建过程中,对每个节点在划分前进行估计。如果当前节点的划分不能带来模型性能的提升(如通过交叉验证评估),则停止划分并将该节点标记为叶节点。
    • 后剪枝:先构建完整的决策树,然后从底向上对非叶节点进行考察。如果替换某个子树为叶节点能够提升模型的性能(如通过评估在验证集上的性能),则进行替换。

四、决策树的实例

预测信用卡欺诈

代码:

import pandas as pd  
from sklearn.model_selection import train_test_split  
from sklearn.tree import DecisionTreeClassifier  
from sklearn.metrics import accuracy_score  
  
# 假设的信用卡欺诈数据集  
dataSet = [  
    # [年龄, 性别, 收入, 欺诈]  
    [25, '男', 50000, '否'],  
    [30, '女', 80000, '否'],
    [35, '男', 75000, '是'],
    [28, '女', 90000, '是'],  
    [32, '男', 60000, '否'],  
    [38, '女', 85000, '是'],  
    [29, '男', 75000, '否'],  
    [31, '女', 95000, '是'],  
    [27, '男', 65000, '否'],  
    [33, '女', 100000, '是'],
    [40, '男', 70000, '是']
]  
  
# 特征标签  
labels = ['年龄', '性别', '收入']  
  
# 将类别标签转换为数值型,'男'为0,'女'为1 ,欺诈'否'为0,'是'为1
data = [[age, 0 if gender == '男' else 1, income, 0 if fraud == '否' else 1]   
         for age, gender, income, fraud in dataSet]  
  
df = pd.DataFrame(data, columns=labels + ['是否欺诈'])  
  
# 划分特征和目标变量  
X = df[labels]  
y = df['是否欺诈']  
  
# 划分训练集和测试集  
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)  
  
# 创建决策树分类器  
clf = DecisionTreeClassifier()  
  
# 训练模型  
clf.fit(X_train, y_train)  
  
# 在测试集上进行预测  
y_pred = clf.predict(X_test)  
  
# 打印测试集特征和预测结果  
print(X_test)  
print(f'预测结果为:{y_pred}')  
  
# 计算准确率  
accuracy = accuracy_score(y_test, y_pred)  
print(f'模型准确率: {accuracy * 100:.2f}%')

结果:

五、总结

本次实验通过scikit-learn库构建并训练了决策树分类器,用于处理分类问题。实验过程中,成功地将数据集划分为特征和目标变量,并划分为训练集和测试集。通过训练模型并对测试集进行预测,评估了决策树模型的性能,结果显示其分类准确率较高。决策树模型具有易于理解和解释的优点,但也需要注意其可能存在的过拟合问题。尽管存在这些局限性,决策树仍然是一种广泛适用的机器学习算法,可用于多种实际场景。未来,我们可以通过集成方法进一步提升决策树的性能。

  • 10
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值