随机信号的参数估计(AR模型)

随机信号的参数估计(AR模型)

201710413068
利满雯
17广电工方向三
一、AR模型简介
自回归模型(简称AR模型),是统计上一种处理时间序列的方法,用同一变数例如x的之前各期,亦即x1至xt-1来预测本期xt的表现,并假设它们为一线性关系。因为这是从回归分析中的线性回归发展而来,只是不用x预测y,而是用x预测 x(自己),所以叫做自回归。
二、定义
在这里插入图片描述

其中: c是常数项;εt 被假设为平均数等于0,标准差等于σ随机误差值,σ被假设为对于任何的t都不变。
文字叙述为:X的当期值等于一个或数个落后期的线性组合,加常数项,加随机误差。
三、优点与限制
自回归方法的优点是所需资料不多,可用自身变数数列来进行预测。
但是这种方法受到一定的限制:必须具有自相关,自相关系数( φi )是关键。如果自相关系数®小于0.5,则不宜采用,否则预测结果极不准确。
自回归只能适用于预测与自身前期相关的经济现象,即受自身历史因素影响较大的经济现象,如矿的开采量,各种自然资源产量等;对于受社会因素影响较大的经济现象,不宜采用自回归,而应改采可纳入其他变数的向量自回归模型。
四、AR模型和自相关函数的推导
在这里插入图片描述
举例说明
已知自回归模型为
在这里插入图片描述
W(n)是具有方差为1的平稳白噪声,求
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
C.

x_n = [0.4282 1.1454 1.5597 1.8994 1.6854 2.3075 2.4679 1.9790 1.6063 1.2804 -0.2083 0.0577 0.0206 0.3572 1.6572 0.7488 1.6666 1.9830 2.6914 1.2521 1.8691 1.6855 0.6242 0.1763 1.3490 0.6955 1.2941 1.0475 0.4319 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值