AR(Autoregressive)模型

背景介绍

自回归模型:用同一变量的历史值预测未来值。
应用背景:弱平稳时间序列 { x t } \{x_t\} {xt}(即满足: E ( x t ) = μ , C o v ( x t , x t − l ) = γ l E(x_t)=\mu,Cov(x_t,x_{t-l})=\gamma_l E(xt)=μ,Cov(xt,xtl)=γl性质的时间序列)

模型

{ x t = φ 0 + ∑ i = 1 p φ i x t − i + ε t φ p ≠ 0 E ( ε t ) = 0 , v a r ( ε t ) = σ 2 , E ( ε t ε s ) = 0 , s ≠ t E ( x s ε t ) = 0 , ∀ s < t (1) \left\{\tag{1} \begin{aligned} & x_t = \varphi_0 + \sum_{i=1}^p \varphi_i x_{t-i} + \varepsilon_t \\ & \varphi_p \neq 0 \\ & E(\varepsilon_t)=0,var(\varepsilon_t)=\sigma^2,E(\varepsilon_t \varepsilon_s)=0,s\neq t \\ & E(x_s \varepsilon_t)=0,\forall s < t \end{aligned} \right. xt=φ0+i=1pφixti+εtφp=0E(εt)=0,var(εt)=σ2,E(εtεs)=0,s=tE(xsεt)=0,s<t(1)

限制条件

  • φ p ≠ 0 \varphi_p \neq 0 φp=0,确保模型的最高阶数为 p p p
  • E ( ε i ) = 0 , V a r ( ε i ) = σ ε 2 , E ( ε t ε s ) = 0 , s ≠ t E(\varepsilon_i) = 0,Var(\varepsilon_i) = \sigma_{\varepsilon}^2,E(\varepsilon_t \varepsilon_s)=0,s\neq t E(εi)=0,Var(εi)=σε2,E(εtεs)=0,s=t,要求随机干扰序列 { ε t } \{\varepsilon_t\} {εt}为零均值白噪声序列;
  • E ( x s ε t ) = 0 , ∀ s < t E(x_s \varepsilon_t)=0,\forall s < t E(xsεt)=0,s<t,当期的随机干扰与过去的序列值无关。

通常默认限制条件,把 A R ( p ) AR(p) AR(p)模型简记为:
x t = φ 0 + ∑ i = 1 p φ i x t − i + ε t (2) x_t = \varphi_0 + \sum_{i=1}^p \varphi_i x_{t-i} + \varepsilon_t \tag{2} xt=φ0+i=1pφixti+εt(2)


统计性质

均值

{ x t } \{x_t\} {xt}的弱平稳性知, E ( x t ) = μ E(x_t)=\mu E(xt)=μ
E ( x t ) = φ 0 + ∑ i = 1 p φ i E ( x t − i ) + E ( ε t ) (3) E(x_t) = \varphi_0 + \sum_{i=1}^p \varphi_i E(x_{t-i}) + E(\varepsilon_t) \tag{3} E(xt)=φ0+i=1pφiE(xti)+E(εt)(3)

μ = φ 0 1 − ∑ i = 1 p φ i (4) \mu = \frac{\varphi_0}{1-\sum_{i=1}^p \varphi_i} \tag{4} μ=1i=1pφiφ0(4)

对于中心化 A R ( p ) AR(p) AR(p)模型,有 E ( x t ) = 0 E(x_t)=0 E(xt)=0,显然对于任意 A R ( p ) AR(p) AR(p)模型都可以通过减去自身均值 μ \mu μ从而变为中心化 A R ( p ) AR(p) AR(p)模型。

自协方差函数

含义:度量变量过去的行为对现在的影响。

定义1:对于时间序列 { x t , t ∈ T } \{x_t,t \in T\} {xt,tT},任取 t , s ∈ T t,s\in T t,sT γ t , s \gamma_{t,s} γt,s为序列 { x t } \{x_t\} {xt}的自协方差函数
γ t , s = E ( x t − μ t ) ( x s − μ s ) (5) \gamma_{t,s}=E(x_t-\mu_t)(x_s-\mu_s) \tag{5} γt,s=E(xtμt)(xsμs)(5)
对于中心化 A R ( p ) AR(p) AR(p)模型而言, μ t = μ s = 0 \mu_t=\mu_s=0 μt=μs=0,因此
γ t , s = E ( x t x s ) (6) \gamma_{t,s}=E(x_t x_s) \tag{6} γt,s=E(xtxs)(6)
定义2: γ k \gamma_k γk为时间序列 { x t } \{x_t\} {xt}的延迟 k k k阶自协方差函数 γ k = γ t , t − k = E ( x t , x t − k ) \gamma_k=\gamma_{t,t-k}=E(x_t,x_{t-k}) γk=γt,tk=E(xt,xtk)

在中心化 A R ( p ) AR(p) AR(p)模型 x t = ∑ i = 1 p φ i x t − i + ε t x_t=\sum_{i=1}^p \varphi_i x_{t-i} + \varepsilon_t xt=i=1pφixti+εt等式两边同乘 x t − k ( k ≥ 1 ) x_{t-k}(k \ge 1) xtk(k1),再求期望得
E ( x t x t − k ) = ∑ i = 1 p φ i E ( x t − i x t − k ) + E ( ε t x t − k ) , ∀ k ≥ 1 (7) E(x_t x_{t-k}) = \sum_{i=1}^p \varphi_i E(x_{t-i}x_{t-k})+E(\varepsilon_t x_{t-k}),\forall k \ge 1 \tag{7} E(xtxtk)=i=1pφiE(xtixtk)+E(εtxtk),k1(7)
A R ( p ) AR(p) AR(p)模型的条件三知 E ( ε t x t − k ) = 0 E(\varepsilon_t x_{t-k})=0 E(εtxtk)=0,所以
γ k = ∑ i = 1 p φ i γ k − i (8) \gamma_k = \sum_{i=1}^p \varphi_i \gamma_{k-i} \tag{8} γk=i=1pφiγki(8)

自相关系数

ρ k = γ t , t − k v a r ( x t ) v a r ( x t + k ) = γ k γ 0 (9) \rho_{k} = \frac{\gamma_{t,t-k}}{\sqrt{var(x_t)var(x_{t+k})}}=\frac{\gamma_k}{\gamma_0} \tag{9} ρk=var(xt)var(xt+k) γt,tk=γ0γk(9)

偏自相关系数
定义

对于平稳序列 { x t } \{x_t\} {xt},滞后 k k k偏自相关系数就是在给定时间序列中间 k − 1 k-1 k1个随机变量 x t − 1 , x t − 2 , ⋯   , x t − k + 1 x_{t-1},x_{t-2},\cdots,x_{t-k+1} xt1,xt2,,xtk+1的条件下, x t − k x_{t-k} xtk x t x_t xt相关影响的度量。
ρ x t , x t − k ∣ x t − 1 , ⋯   , x t − k + 1 = E [ ( x t − E ^ x t ) ( x t − k − E ^ x t − k ) ] E [ ( x t − k − E ^ x t − k ) 2 ] (10) \rho_{x_t,x_{t-k}|x_{t-1,\cdots,x_{t-k+1}}} = \frac{E[(x_t - \hat{E}x_t)(x_{t-k} - \hat{E}x_{t-k})]}{E[(x_{t-k}-\hat{E}x_{t-k})^2]} \tag{10} ρxt,xtkxt1,,xtk+1=E[(xtkE^xtk)2]E[(xtE^xt)(xtkE^xtk)](10)
式中, E ^ x t = E [ x t ∣ x t − 1 , ⋯   , x t − k + 1 ] \hat{E}x_t=E[x_t|x_{t-1,\cdots,x_{t-k+1}}] E^xt=E[xtxt1,,xtk+1] E ^ x t − k = E [ x t − k ∣ x t − 1 , ⋯   , x t − k + 1 ] \hat{E}x_{t-k}=E[x_{t-k}|x_{t-1,\cdots,x_{t-k+1}}] E^xtk=E[xtkxt1,,xtk+1]

计算方式

考虑 { x t } \{x_t\} {xt}为中心化平稳序列,用过去的 k k k期序列值 x t − 1 , x t − 2 , ⋯   , x t − k x_{t-1},x_{t-2},\cdots,x_{t-k} xt1,xt2,,xtk x i x_i xi k k k阶自回归拟合,即
x t = φ k 1 x t − 1 + φ k 2 x t − 2 + ⋯ + φ k k x t − k + ε k (11) x_t = \varphi_{k1}x_{t-1} + \varphi_{k2}x_{t-2}+\cdots+\varphi_{kk}x_{t-k} + \varepsilon_k \tag{11} xt=φk1xt1+φk2xt2++φkkxtk+εk(11)
取期望有:
E ^ x t = ∑ i = 1 k − 1 φ k i x t − i + φ k k E ^ ( x t − k ) (12) \hat{E}x_t = \sum_{i=1}^{k-1} \varphi_{ki}x_{t-i} +\varphi_{kk} \hat{E}(x_{t-k}) \tag{12} E^xt=i=1k1φkixti+φkkE^(xtk)(12)

x t − E ^ x t = φ k k ( x t − k − E ^ x t − k ) + ε t (13) x_t - \hat{E}x_t = \varphi_{kk}(x_{t-k} - \hat{E}x_{t-k}) + \varepsilon_t \tag{13} xtE^xt=φkk(xtkE^xtk)+εt(13)
等式两边同乘 x t − k − E ^ x t − k x_{t-k} - \hat{E}x_{t-k} xtkE^xtk,并求期望有:
E [ ( x t − E ^ x t ) ( x t − k − E ^ x t − k ) ] = φ k k E [ ( x t − k − E ^ x t − k ) 2 ] (14) E[(x_t - \hat{E}x_t) (x_{t-k} - \hat{E}x_{t-k})] = \varphi_{kk}E[(x_{t-k} - \hat{E}x_{t-k})^2] \tag{14} E[(xtE^xt)(xtkE^xtk)]=φkkE[(xtkE^xtk)2](14)

φ k k = E [ ( x t − E ^ x t ) ( x t − k − E ^ x t − k ) ] E [ ( x t − k − E ^ x t − k ) 2 ] (15) \varphi_{kk} = \frac{E[(x_t - \hat{E}x_t) (x_{t-k} - \hat{E}x_{t-k})]}{E[(x_{t-k} - \hat{E}x_{t-k})^2]} \tag{15} φkk=E[(xtkE^xtk)2]E[(xtE^xt)(xtkE^xtk)](15)
滞后 k k k偏自相关系数实际上就等于 k k k阶自回归模型第 k k k个回归系数 φ k k \varphi_{kk} φkk的值。可以证明平稳 A R ( p ) AR(p) AR(p)模型的偏自相关系数具有 p p p步截尾性,即 φ k k = 0 ( ∀ k > p ) \varphi_{kk}=0(\forall k > p) φkk=0(k>p)


定阶

A R AR AR模型可使用偏自相关函数 P A C F PACF PACF截尾(相关系数快速收敛到等于0的置信区间内)定阶。

PACF


预测

不妨设预测原点为 h h h F h F_h Fh表示在预测原点已知信息, x ^ h ( l ) \hat{x}_h(l) x^h(l)为序列 { x t } \{x_t\} {xt}的以 x h x_h xh为预测原点的向前 l l l步预测(即:在预测原点 h h h已知信息 F h F_h Fh的条件下, x h + l x_{h+l} xh+l的条件均值)。

1步预测

x h + 1 = φ 0 + ∑ i = 1 p φ i x h + 1 − i + ε h + 1 x ^ h ( 1 ) = E ( x h + 1 ∣ F h ) = φ 0 + ∑ i = 1 p φ i x h + 1 − i (16) \begin{aligned} \tag{16} x_{h+1} &=\varphi_0+\sum_{i=1}^p \varphi_i x_{h+1-i}+\varepsilon_{h+1}\\ \hat{x}_h(1) &= E(x_{h+1}|F_h)=\varphi_0+\sum_{i=1}^p \varphi_i x_{h+1-i} \end{aligned} xh+1x^h(1)=φ0+i=1pφixh+1i+εh+1=E(xh+1Fh)=φ0+i=1pφixh+1i(16)
注意 E ( ε h + 1 ) = 0 E(\varepsilon_{h+1})=0 E(εh+1)=0,是因为随机误差是白噪声序列, E ( x h + 1 − i ) = x h + 1 − i E(x_{h+1-i})=x_{h+1-i} E(xh+1i)=xh+1i是因为预测原点 h h h的前 p p p个历史值已然发生,是确定的数值。

1步预测误差:
ε h ( 1 ) = x h + 1 − x h ( 1 ) = ε h + 1 (17) \varepsilon_h(1)=x_{h+1}-x_h(1)=\varepsilon_{h+1} \tag{17} εh(1)=xh+1xh(1)=εh+1(17)
1步预测误差方差:
v a r ( ε h ( 1 ) ) = v a r ( ε h + 1 ) = σ ε 2 (18) var(\varepsilon_h(1)) = var(\varepsilon_{h+1})=\sigma_{\varepsilon}^2 \tag{18} var(εh(1))=var(εh+1)=σε2(18)

2步预测

x h + 2 = φ 0 + ∑ i = 1 p φ i x h + 2 − i + ε h + 2 x ^ h ( 2 ) = E ( x h + 2 ∣ F h ) = φ 0 + φ 1 x ^ h + 1 + ∑ i = 2 p φ i x h + 2 − i (19) \begin{aligned}\tag{19} x_{h+2} &=\varphi_0+\sum_{i=1}^p \varphi_i x_{h+2-i}+\varepsilon_{h+2}\\ \hat{x}_h(2) &= E(x_{h+2}|F_h)=\varphi_0+\varphi_1 \hat{x}_{h+1} + \sum_{i=2}^p \varphi_i x_{h+2-i} \end{aligned} xh+2x^h(2)=φ0+i=1pφixh+2i+εh+2=E(xh+2Fh)=φ0+φ1x^h+1+i=2pφixh+2i(19)
注意:因为在预测原点 h h h h + 2 h+2 h+2时刻的序列值做出预测时, h + 1 h+1 h+1时刻的序列值并未发生,所以需要首先计算 x ^ h + 1 \hat{x}_{h+1} x^h+1作为 h + 1 h+1 h+1时刻序列值的近似替换。

2步预测误差
ε h ( 2 ) = x h + 2 − x ^ h ( 2 ) = φ 1 ( x h + 1 − x ^ h ( 1 ) ) + ε h + 2 = ε h + 2 + φ 1 ε h + 1 (20) \tag{20} \begin{aligned} \varepsilon_h(2) &= x_{h+2}-\hat{x}_h(2)= \varphi_1(x_{h+1}-\hat{x}_h(1)) + \varepsilon_{h+2}\\ &= \varepsilon_{h+2} + \varphi_1 \varepsilon_{h+1} \end{aligned} εh(2)=xh+2x^h(2)=φ1(xh+1x^h(1))+εh+2=εh+2+φ1εh+1(20)
2步预测误差方差
v a r ( ε h ( 2 ) ) = ( 1 + φ 1 ) σ ε 2 (21) var(\varepsilon_h(2)) =(1+\varphi_1)\sigma_{\varepsilon}^2 \tag{21} var(εh(2))=(1+φ1)σε2(21)
显然 v a r ( ε h ( 2 ) ) > v a r ( ε h ( 1 ) ) var(\varepsilon_h(2)) > var(\varepsilon_h(1)) var(εh(2))>var(εh(1)),这意味着预测步长的增加会使预测的不确定性也增加。

向前多步预测( l ≥ 2 l\ge2 l2

x h + l = φ 0 + ∑ i = 1 p φ i x h + l − i + ε h + l x ^ h ( l ) = E ( x h + l ∣ F h ) = φ 0 + ∑ i = 1 l − 1 φ i x ^ h ( i ) + ∑ i = l p φ i x h + l − i (22) \tag{22} \begin{aligned} x_{h+l} &=\varphi_0+\sum_{i=1}^p \varphi_i x_{h+l-i}+\varepsilon_{h+l}\\ \hat{x}_h(l) &= E(x_{h+l}|F_h)=\varphi_0+ \sum_{i=1}^{l-1} \varphi_i \hat{x}_h(i) + \sum_{i=l}^p \varphi_i x_{h+l- i} \end{aligned} xh+lx^h(l)=φ0+i=1pφixh+li+εh+l=E(xh+lFh)=φ0+i=1l1φix^h(i)+i=lpφixh+li(22)

优缺点

优点:简单,仅用自身变量数列就可进行预测。

缺点:变量必须具有自相关,只适用于预测与自身前期相关的经济现象,对社会因素影响较大的经济现象,不宜采用自回归。


王燕.应用时间序列分析[M].中国人民大学出版社.201907

微信公众号

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值