146.LRU缓存

题目:

请你设计并实现一个满足  LRU (最近最少使用) 缓存 约束的数据结构。

实现 LRUCache 类:

  • LRUCache(int capacity) 以 正整数 作为容量 capacity 初始化 LRU 缓存
  • int get(int key) 如果关键字 key 存在于缓存中,则返回关键字的值,否则返回 -1 。
  • void put(int key, int value) 如果关键字 key 已经存在,则变更其数据值 value ;如果不存在,则向缓存中插入该组 key-value 。如果插入操作导致关键字数量超过 capacity ,则应该 逐出 最久未使用的关键字。

函数 get 和 put 必须以 O(1) 的平均时间复杂度运行。

示例:

输入
["LRUCache", "put", "put", "get", "put", "get", "put", "get", "get", "get"]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]]
输出
[null, null, null, 1, null, -1, null, -1, 3, 4]

解释
LRUCache lRUCache = new LRUCache(2);
lRUCache.put(1, 1); // 缓存是 {1=1}
lRUCache.put(2, 2); // 缓存是 {1=1, 2=2}
lRUCache.get(1);    // 返回 1
lRUCache.put(3, 3); // 该操作会使得关键字 2 作废,缓存是 {1=1, 3=3}
lRUCache.get(2);    // 返回 -1 (未找到)
lRUCache.put(4, 4); // 该操作会使得关键字 1 作废,缓存是 {4=4, 3=3}
lRUCache.get(1);    // 返回 -1 (未找到)
lRUCache.get(3);    // 返回 3
lRUCache.get(4);    // 返回 4

LCR 031. LRU 缓存 - 力扣(LeetCode)

题解:

思路:

用一个哈希表和一个双端队列,队列里面存储key,哈希存value。get时把对应的key删除,放在队首。put时有旧的则删掉,size够了把队列的最后一个删掉。然后加入,并且覆盖哈希表里面的值。

代码:

class LRUCache {

    private int capacity;
    private Map<Integer,Integer> cache;
    private Deque<Integer> queue;
    
    public LRUCache(int capacity) {
        this.capacity=capacity;
        this.cache=new HashMap<>();
        this.queue=new LinkedList<>();
    }
    
    public int get(int key) {
        if(cache.containsKey(key)){
            queue.remove(key);
            queue.offerFirst(key);
            return cache.get(key);
        }
        return -1;
    }
    
    public void put(int y, int value) {
        if(cache.containsKey(y)){
            queue.remove(y);
        }
        if(queue.size()==capacity){
            Integer oldKey=queue.pollLast();
            cache.remove(oldKey);
        }
        cache.put(y,value);
        queue.offerFirst(y);
    }
}

class Node {
    int data;
    Node next;
    Node prev;
    
    Node(int data) {
        this.data = data;
    }
}

class MyDeque {
    private Node front;
    private Node rear;
    private int size;
    
    public MyDeque() {
        front = null;
        rear = null;
        size = 0;
    }
    
    // 向队列前端添加元素
    public void offerFirst(int data) {
        Node newNode = new Node(data);
        if (isEmpty()) {
            front = newNode;
            rear = newNode;
        } else {
            newNode.next = front;
            front.prev = newNode;
            front = newNode;
        }
        size++;
    }
    
    // 移除指定元素
    public void remove(int key) {
        Node current = front;
        while (current != null) {
            if (current.data == key) {
                if (current == front) {
                    pollFirst();
                } else if (current == rear) {
                    pollLast();
                } else {
                    current.prev.next = current.next;
                    current.next.prev = current.prev;
                    size--;
                }
                return;
            }
            current = current.next;
        }
        return;
    }
    
 // 从队列尾部移除元素
    public int pollLast() {
        if (isEmpty()) {
            return -1;
        }
        int removedData = rear.data;
        if (size == 1) {
            front = null;
            rear = null;
        } else {
            rear = rear.prev;
            rear.next = null;
        }
        size--;
        return removedData;
    }
 // 从队列前端移除元素
    public int pollFirst() {
        if (isEmpty()) {
            return -1;
        }
        int removedData = front.data;
        if (size == 1) {
            front = null;
            rear = null;
        } else {
            front = front.next;
            front.prev = null;
        }
        size--;
        return removedData;
    }
    // 判断队列是否为空
    public boolean isEmpty() {
        return size == 0;
    }
    
    // 获取队列大小
    public int size() {
        return size;
    }
    
}

完整的双端队列:

class Node {
    int data;
    Node next;
    Node prev;
    
    Node(int data) {
        this.data = data;
    }
}

public class MyDeque {
    private Node front;
    private Node rear;
    private int size;
    
    public MyDeque() {
        front = null;
        rear = null;
        size = 0;
    }
    
    // 向队列前端添加元素
    public void addFirst(int data) {
        Node newNode = new Node(data);
        if (isEmpty()) {
            front = newNode;
            rear = newNode;
        } else {
            newNode.next = front;
            front.prev = newNode;
            front = newNode;
        }
        size++;
    }
    
    // 向队列尾部添加元素
    public void addLast(int data) {
        Node newNode = new Node(data);
        if (isEmpty()) {
            front = newNode;
            rear = newNode;
        } else {
            rear.next = newNode;
            newNode.prev = rear;
            rear = newNode;
        }
        size++;
    }
    
    // 从队列前端移除元素
    public int removeFirst() {
        if (isEmpty()) {
            throw new IllegalStateException("队列为空");
        }
        int removedData = front.data;
        if (size == 1) {
            front = null;
            rear = null;
        } else {
            front = front.next;
            front.prev = null;
        }
        size--;
        return removedData;
    }
    
    // 从队列尾部移除元素
    public int removeLast() {
        if (isEmpty()) {
            throw new IllegalStateException("队列为空");
        }
        int removedData = rear.data;
        if (size == 1) {
            front = null;
            rear = null;
        } else {
            rear = rear.prev;
            rear.next = null;
        }
        size--;
        return removedData;
    }
    
    // 移除指定元素
    public void remove(int key) {
        Node current = front;
        while (current != null) {
            if (current.data == key) {
                if (current == front) {
                    removeFirst();
                } else if (current == rear) {
                    removeLast();
                } else {
                    current.prev.next = current.next;
                    current.next.prev = current.prev;
                    size--;
                }
                return;
            }
            current = current.next;
        }
        throw new IllegalArgumentException("队列中没有该元素");
    }
    
    // 获取队列前端元素
    public int getFirst() {
        if (isEmpty()) {
            throw new IllegalStateException("队列为空");
        }
        return front.data;
    }
    
    // 获取队列尾部元素
    public int getLast() {
        if (isEmpty()) {
            throw new IllegalStateException("队列为空");
        }
        return rear.data;
    }
    
    // 判断队列是否为空
    public boolean isEmpty() {
        return size == 0;
    }
    
    // 获取队列大小
    public int size() {
        return size;
    }
    
}

解法1:使用有序字典(OrderedDict) 思路: 1. 使用一个有序字典来存储缓存的键值对,有序字典可以保持插入顺序。 2. 当插入一个新的键值对时,如果缓存已满,需要删除最久未使用的键值对,即删除有序字典的第一个元素。 3. 当访问一个已存在的键值对时,需要将该键值对移动到有序字典的末尾,表示最近使用过。 实现: 1. 初始化时,设定缓存容量,创建一个空的有序字典。 2. 获取指定键的值时,若键不存在则返回-1;若键存在则将该键值对的值返回,并将该键值对移动到有序字典的末尾。 3. 插入一个键值对时,若键已存在则更新该键值对的值,并将该键值对移动到有序字典的末尾;若键不存在,则插入该键值对,并将该键值对移动到有序字典的末尾。若插入后缓存超出容量,则删除有序字典的第一个元素。 代码实现如下: ```python from collections import OrderedDict class LRUCache: def __init__(self, capacity: int): self.capacity = capacity self.cache = OrderedDict() def get(self, key: int) -> int: if key in self.cache: self.cache.move_to_end(key) return self.cache[key] return -1 def put(self, key: int, value: int) -> None: if key in self.cache: del self.cache[key] self.cache[key] = value if len(self.cache) > self.capacity: self.cache.popitem(last=False) ``` 复杂度分析: - 时间复杂度:对于get和put操作,有序字典的删除和插入操作的时间复杂度都是O(1),因此 get和put操作的时间复杂度均为O(1)。 - 空间复杂度:使用了一个有序字典来存储键值对,因此空间复杂度为O(N),其中N为缓存的容量。 解法2:使用哈希表和双向链表 思路: 1. 使用一个哈希表来存储缓存的键值对,哈希表的键为缓存的键,值为双向链表中对应节点的指针。 2. 使用一个双向链表来存储缓存的键值对,链表的每个节点包括键、值和前后指针。 3. 当插入一个新的键值对时,如果缓存已满,需要删除最久未使用的键值对,即删除双向链表的头节点,同时从哈希表中删除该键。 4. 当访问一个已存在的键值对时,需要将该键值对对应的节点移动到双向链表的尾部,表示最近使用过。 实现: 1. 初始化时,设定缓存容量,创建一个空的哈希表和双向链表。 2. 获取指定键的值时,若键不存在则返回-1;若键存在则将该键值对的值返回,并将该键值对对应的节点移动到双向链表的尾部。 3. 插入一个键值对时,若键已存在则更新该键值对的值,并将该键值对对应的节点移动到双向链表的尾部;若键不存在,则插入该键值对对应的节点到双向链表的尾部,并在哈希表中添加该键值对。若插入后缓存超出容量,则删除双向链表的头节点,并从哈希表中删除对应键。 代码实现如下: ```python class DLinkedNode: def __init__(self, key=0, value=0): self.key = key self.value = value self.prev = None self.next = None class LRUCache: def __init__(self, capacity: int): self.capacity = capacity self.cache = dict() self.head = DLinkedNode() self.tail = DLinkedNode() self.head.next = self.tail self.tail.prev = self.head def get(self, key: int) -> int: if key in self.cache: node = self.cache[key] self.moveToTail(node) return node.value return -1 def put(self, key: int, value: int) -> None: if key in self.cache: node = self.cache[key] node.value = value self.moveToTail(node) else: if len(self.cache) >= self.capacity: self.removeLRU() node = DLinkedNode(key, value) self.cache[key] = node self.addToTail(node) def moveToTail(self, node: DLinkedNode) -> None: self.removeNode(node) self.addToTail(node) def removeNode(self, node: DLinkedNode) -> None: node.prev.next = node.next node.next.prev = node.prev def addToTail(self, node: DLinkedNode) -> None: node.prev = self.tail.prev node.next = self.tail self.tail.prev.next = node self.tail.prev = node def removeLRU(self) -> None: lruNode = self.head.next self.removeNode(lruNode) del self.cache[lruNode.key] ``` 复杂度分析: - 时间复杂度:对于get和put操作,哈希表的查找和删除操作的时间复杂度都是O(1),双向链表的插入和删除操作的时间复杂度也是O(1),因此 get和put操作的时间复杂度均为O(1)。 - 空间复杂度:哈希表和双向链表分别需要存储所有键值对和节点,因此空间复杂度为O(N),其中N为缓存的容量。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值