常见现代卷积神经网络(VGG,NIN,googlenet)(Pytorch 10)

一 神经网络-VGG网络

1.1 VGG块

虽然AlexNet证明深层神经网络卓有成效,但它没有提供一个通用的模板来指导后续的研究人员设计新的网络,经典卷积神经网络的基本组成部分是下面的这个序列:

  1. 带填充以保持分辨率的卷积层
  2. 非线性激活函数,如ReLU
  3. 汇聚层,如最大汇聚层。

而一个VGG块与之类似,由一系列卷积层组成,后面再加上用于空间下采样的最大汇聚层。在最初的VGG论 文中 (Simonyan and Zisserman, 2014),作者使用了 带有3 × 3卷积核、填充为1(保持高度和宽度)的卷积层, 和带有2 × 2汇聚窗口、步幅为2(每个块后的分辨率减半)的 最大汇聚层。在下面的代码中,我们定义了一 个名为vgg_block的函数来实现一个VGG块。 该函数有三个参数,分别对应于 卷积层 的数量num_convs、输入通道 的数量in_channels 和 输出通道 的数 量out_channels。

import torch
from torch import nn
from d2l import torch as d2l


def vgg_block(num_convs, in_channels, out_channels):
    layers = []
    for _ in range(num_convs):
        layers.append(nn.Conv2d(in_channels, out_channels, kernel_size=3, 
                                padding=1))
        layers.append(nn.ReLU())
        in_channels = out_channels
    layers.append(nn.MaxPool2d(kernel_size=2, stride=2))
    return nn.Sequential(*layers)

1.2 VGG网络

与 AlexNet、LeNet 一样,VGG网络可以分为两部分:第一部分主要由卷积层和汇聚层组成,第二部分由全连 接层组成

VGG神经网络连接图的几个VGG块(在vgg_block函数中定义)。其中有超参数变量conv_arch。该变量 指定了每个VGG块里卷积层个数和输出通道数。全连接模块则与AlexNet中的相同。

原始VGG网络有5个卷积块,其中前两个块各有一个卷积层,后三个块各包含两个卷积层。第一个模块有64个 输出通道,每个后续模块将输出通道数量翻倍,直到该数字达到512。由于该网络使用8个卷积层和3个全连接 层,因此它通常被称为 VGG‐11

下面的代码实现了VGG‐11。可以通过在conv_arch上执行for循环来简单实现。

def vgg(conv_arch):
    conv_blks = []
    in_channels = 1
    for (num_convs, out_channels) in conv_arch:
        conv_blks.append(vgg_block(num_convs, in_channels, out_channels))
        in_channels = out_channels
        
    return nn.Sequential(
        *conv_blks, nn.Flatten(),
        nn.Linear(out_channels * 7 * 7, 4096), nn.ReLU(), nn.Dropout(0.5),
        nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(0.5),
        nn.Linear(4096, 10))

conv_arch = ((1, 64), (1, 128), (2, 256), (2, 512), (2, 512))
net = vgg(conv_arch)
net

构建一个高度和宽度为224的 单通道数据样本,以 观察每个层输出的形状

X = torch.randn(size=(1, 1, 224, 224))
for blk in net:
    X = blk(X)
    print(blk.__class__.__name__,'output shape:\t',X.shape)
    
# print(f'64*112*112={64*112*112}')# 802816
# print(f'128*56*56 ={128*56*56}') # 401408
# print(f'256*28*28 ={256*28*28}') # 200704
# print(f'512*14*14 ={512*14*14}') # 100352
# print(f'512*7*7   ={512*7*7}')   # 25088
# print(f'25088     ={25088}')     # 25088

1.3 训练模型

由于VGG‐11比AlexNet计算量更大,因此我们构建了一个通道数较少的网络,足够用于训练Fashion‐MNIST数 据集。

ratio = 4
small_conv_arch = [(pair[0], pair[1] // ratio) for pair in conv_arch]
net = vgg(small_conv_arch)

除了使用略高的学习率外,模型训练过程与 AlexNet类似。

lr, num_epochs, batch_size = 0.05, 10, 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

小结 :

  • VGG‐11使用 可复用的卷积块构造网络。不同的VGG模型可通过每个块中卷积层数量和输出通道数量的 差异来定义。
  • 块的使用导致网络定义的非常简洁。使用块可以有效地设计复杂的网络。
  • 在VGG论文中,Simonyan和Ziserman尝试了各种架构。特别是他们发现 深层且窄的卷积(即3 × 3)比 较浅层且宽的卷积更有效

二 网络中的网络(NiN)

LeNet、AlexNet和VGG都有一个共同的设计模式:通过一系列的卷积层与汇聚层来提取空间结构特征;然后 通过全连接层对特征的表征进行处理。AlexNet和VGG对LeNet的改进主要在于如何扩大和加深这两个模块。 或者,可以想象在这个过程的早期使用全连接层。然而,如果使用了全连接层,可能会完全放弃表征的空间结 构。网络中的网络(NiN)提供了一个非常简单的解决方案:在每个像素的通道上分别使用多层感知机

2.1 NiN块

回想一下,卷积层的输入和输出由四维张量组成,张量的每个轴分别对应 样本、通道、高度和宽度。另外, 全连接层的输入和输出通常是分别对应于样本和特征的二维张量。NiN的想法是在每个像素位置(针对每个 高度和宽度)应用一个全连接层。如果我们将权重连接到每个空间位置,我们可以将其视为 1 × 1卷积层,或作为在每个像素位置上独立作用的全连接层。从另一个角度看,即将空间维度中的每个像 素视为单个样本,将通道维度视为不同特征(feature)。

import torch
from torch import nn
from d2l import torch as d2l

def nin_block(in_channels, out_channels, kernel_size, strides, padding):
    return nn.Sequential(
        nn.Conv2d(in_channels, out_channels, kernel_size, strides, padding),
        nn.ReLU(),
        nn.Conv2d(out_channels, out_channels, kernel_size=1), nn.ReLU(),
        nn.Conv2d(out_channels, out_channels, kernel_size=1), nn.ReLU())

1.2 NiN模型

最初的NiN网络是在AlexNet后不久提出的,显然从中得到了一些启示。NiN使用窗口形状为11×11、5×5和3× 3的卷积层,输出通道数量与AlexNet中的相同。每个NiN块后有一个最大汇聚层,汇聚窗口形状为3 × 3,步幅为2

NiN和AlexNet之间的一个显著区别是 NiN完全取消了全连接层。相反,NiN使用一个NiN块,其输出通道数等 于标签类别的数量。最后放一个 全局平均汇聚层(global average pooling layer),生成一个对数几率(logits)。 NiN设计的一个优点是,它 显著减少了模型所需参数的数量。然而,在实践中,这种设计有时会增加训练模 型的时间。

net = nn.Sequential(
    nin_block(1, 96, kernel_size=11, strides=4, padding=0),
    nn.MaxPool2d(3, stride=2),
    nin_block(96, 256, kernel_size=5, strides=1, padding=2),
    nn.MaxPool2d(3, stride=2),
    nin_block(256, 384, kernel_size=3, strides=1, padding=1),
    nn.MaxPool2d(3, stride=2),
    nn.Dropout(0.5),
    # 标签类别数是10
    nin_block(384, 10, kernel_size=3, strides=1, padding=1),
    nn.AdaptiveAvgPool2d((1, 1)),
    # 将四维的输出转成二维的输出,其形状为(批量大小,10)
    nn.Flatten())

我们创建一个数据样本来查看每个块的输出形状。

X = torch.rand(size=(1, 1, 224, 224))
for layer in net:
    X = layer(X)
    print(layer.__class__.__name__,'output shape:\t', X.shape)

# Sequential output shape:	 torch.Size([1, 96, 54, 54])
# MaxPool2d output shape:	 torch.Size([1, 96, 26, 26])
# Sequential output shape:	 torch.Size([1, 256, 26, 26])
# MaxPool2d output shape:	 torch.Size([1, 256, 12, 12])
# Sequential output shape:	 torch.Size([1, 384, 12, 12])
# MaxPool2d output shape:	 torch.Size([1, 384, 5, 5])
# Dropout output shape:	     torch.Size([1, 384, 5, 5])
# Sequential output shape:	 torch.Size([1, 10, 5, 5])
# AdaptiveAvgPool2d output shape:	 torch.Size([1, 10, 1, 1])
# Flatten output shape:	     torch.Size([1, 10])

2.3 训练模型

和以前一样,我们使用Fashion‐MNIST来训练模型。训练NiN 与训练AlexNet、VGG时相似。

lr, num_epochs, batch_size = 0.1, 10, 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

小结:

  • NiN使用由一个卷积层和多个1 × 1卷积层组成的块。该块可以在卷积神经网络中使用,以允许更多的每 像素非线性。
  • NiN 去除了容易造成过拟合的全连接层,将它们替换为全局平均汇聚层(即在所有位置上进行求和)。该 汇聚层通道数量为所需的输出数量(例如,Fashion‐MNIST的输出为10)。
  • 移除全连接层可减少过拟合,同时显著减少NiN的参数
  • NiN的设计影响了许多后续卷积神经网络的设计。

三 含并行连结的网络(GoogLeNet)

在2014年的ImageNet图像识别挑战赛中,一个名叫GoogLeNet (Szegedy et al., 2015)的网络架构大放异彩。 GoogLeNet吸收了NiN中串联网络的思想,并在此基础上做了改进。这篇论文的一个重点是 解决了什么样大小的卷积核最合适的问题。毕竟,以前流行的网络使用小到1 × 1,大到11 × 11的卷积核。本文的一个观点 是,有时使用不同大小的卷积核组合是有利的。本节将介绍一个稍微简化的GoogLeNet版本:我们省略了一 些为稳定训练而添加的特殊特性,现在有了更好的训练方法,这些特性不是必要的。

3.1 Inception块

在GoogLeNet中,基本的卷积块被称为Inception块(Inception block)。这很可能得名于电影《盗梦空间》(In‐ ception),因为电影中的一句话“我们需要走得更深”(“We need to go deeper”)。

Inception块由 四条并行路径组成。前三条路径使用窗口大小为 1 × 1、3 × 3和5 × 5的卷积层, 从不同空间大小中提取信息。中间的两条路径在输入上执行1 × 1卷积,以减少通道数,从而降低模型的复杂性第四条路径使用3 × 3最大汇聚层,然后使用1 × 1卷积层来改变通道数。这四条路径都使用合适的填充 来使输入与输出的高和宽一致,最后我们将每条线路的输出在通道维度上连结,并构成Inception块的输出。 在Inception块中,通常调整的超参数是每层输出通道数

import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l

class Inception(nn.Module):
    def __init__(self, in_channels, c1, c2, c3, c4, **kwargs):
        super(Inception, self).__init__(**kwargs)
        
        self.p1_1 = nn.Conv2d(in_channels, c1, kernel_size=1)
        self.p2_1 = nn.Conv2d(in_channels, c2[0], kernel_size=1)
        self.p2_2 = nn.Conv2d(c2[0], c2[1], kernel_size=3, padding=1)
        self.p3_1 = nn.Conv2d(in_channels, c3[0], kernel_size=1)
        self.p3_2 = nn.Conv2d(c3[0], c3[1], kernel_size=5, padding=2)
        self.p4_1 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)
        self.p4_2 = nn.Conv2d(in_channels, c4, kernel_size=1)
    
    def forward(self, x):
        p1 = F.relu(self.p1_1(x))
        p2 = F.relu(self.p2_2(F.relu(self.p2_1(x))))
        p3 = F.relu(self.p3_2(F.relu(self.p3_1(x))))
        p4 = F.relu(self.p4_2(self.p4_1(x)))
        return torch.cat((p1, p2, p3, p4), dim=1)

那么为什么GoogLeNet这个网络如此有效呢?首先我们考虑一下滤波器(filter)的组合,它们可以用各种滤 波器尺寸探索图像,这意味着不同大小的滤波器可以有效地识别不同范围的图像细节。同时,我们可以为不 同的滤波器分配不同数量的参数。

3.2 GoogLeNet模型

GoogLeNet一共使用 9个Inception块和全局平均汇聚层 的堆叠来生成其估计值。Inception块 之间的最大汇聚层可降低维度。第一个模块类似于AlexNet和LeNet,Inception块的组合从VGG继承,全局平均汇聚层避免了在最后使用全连接层

现在,我们逐一实现GoogLeNet的每个模块。第一个模块使用64个通道、7 × 7卷积层

b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
                   nn.ReLU(),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

第二个模块使用两个卷积层:第一个卷积层是64个通道、1 × 1卷积层;第二个卷积层使用将通道数量增加三 倍的3 × 3卷积层。这对应于Inception块中的第二条路径。

b2 = nn.Sequential(nn.Conv2d(64, 64, kernel_size=1),
                   nn.ReLU(),
                   nn.Conv2d(64, 192, kernel_size=3, padding=1),
                   nn.ReLU(),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

第三个模块串联 两个完整的Inception块。第一个Inception块的输出通道数为64 + 128 + 32 + 32 = 256,四个路径之间的输出通道数量比为64 : 128 : 32 : 32 = 2 : 4 : 1 : 1。第二个和第三个路径首先将输入通道的数量 分别减少到96/192 = 1/2和16/192 = 1/12,然后连接第二个卷积层。第二个Inception块的输出通道数增加 到128 + 192 + 96 + 64 = 480,四个路径之间的输出通道数量比为128 : 192 : 96 : 64 = 4 : 6 : 3 : 2。第二条和 第三条路径首先将输入通道的数量分别减少到128/256 = 1/2和32/256 = 1/8。

b3 = nn.Sequential(Inception(192, 64, (96, 128), (16, 32), 32),
                   Inception(256, 128, (128, 192), (32, 96), 64),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

第四模块更加复杂,它串联了5个Inception块,其输出通道数分别是192 + 208 + 48 + 64 = 512、160 + 224 + 64 + 64 = 512、128 + 256 + 64 + 64 = 512、112 + 288 + 64 + 64 = 528和256 + 320 + 128 + 128 = 832。这些 路径的通道数分配和第三模块中的类似,首先是含3×3卷积层的第二条路径输出最多通道,其次是仅含1×1卷 积层的第一条路径,之后是含5×5卷积层的第三条路径和含3×3最大汇聚层的第四条路径。其中第二、第三条 路径都会先按比例减小通道数。这些比例在各个Inception块中都略有不同。

b4 = nn.Sequential(Inception(480, 192, (96, 208), (16, 48), 64),
                   Inception(512, 160, (112, 224), (24, 64), 64),
                   Inception(512, 128, (128, 256), (24, 64), 64),
                   Inception(512, 112, (144, 288), (32, 64), 64),
                   Inception(528, 256, (160, 320), (32, 128), 128),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

第五模块包含输出通道数为256 + 320 + 128 + 128 = 832和384 + 384 + 128 + 128 = 1024的 两个Inception块。 其中每条路径通道数的分配思路和第三、第四模块中的一致,只是在具体数值上有所不同。需要注意的是,第 五模块的后面紧跟输出层,该模块同NiN一样使用全局平均汇聚层,将每个通道的高和宽变成1。最后我们将 输出变成二维数组,再接上一个输出个数为标签类别数的全连接层。

b5 = nn.Sequential(Inception(832, 256, (160, 320), (32, 128), 128),
                   Inception(832, 384, (192, 384), (48, 128), 128),
                   nn.AdaptiveAvgPool2d((1,1)),
                   nn.Flatten())
net = nn.Sequential(b1, b2, b3, b4, b5, nn.Linear(1024, 10))
net

GoogLeNet模型的计算复杂,而且不如VGG那样便于修改通道数。为了使Fashion‐MNIST上的训练短小精悍, 我们将输入的高和宽从224降到96,这简化了计算。下面演示各个模块输出的形状变化。

X = torch.rand(size=(1, 1, 96, 96))
for layer in net:
    X = layer(X)
    print(layer.__class__.__name__,'output shape:\t', X.shape)
    
# Sequential output shape:	 torch.Size([1, 64, 24, 24])
# Sequential output shape:	 torch.Size([1, 192, 12, 12])
# Sequential output shape:	 torch.Size([1, 480, 6, 6])
# Sequential output shape:	 torch.Size([1, 832, 3, 3])
# Sequential output shape:	 torch.Size([1, 1024])
# Linear output shape:	 torch.Size([1, 10])

3.3 训练模型

和以前一样,我们使用Fashion‐MNIST数据集来训练我们的模型。在训练之前,我们将图片转换为96 × 96分 辨率

小结:

  • Inception块相当于一个有4条路径的子网络。它通过不同窗口形状的卷积层和最大汇聚层来并行抽取信息,并使用1×1卷积层减少每像素级别上的通道维数从而降低模型复杂度。
  • GoogLeNet将多个设计精细的Inception块与其他层(卷积层、全连接层)串联起来。其中Inception块 的通道数分配之比是在ImageNet数据集上通过大量的实验得来的。
  • GoogLeNet和它的后继者们一度是ImageNet上最有效的模型之一:它以较低的计算复杂度提供了类似 的测试精度

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值