径向基函数 (RBF) 是多变量插值方法。
径向基函数的取值仅仅依赖于离原点距离的实值函数,Φ(x) = Φ(‖x‖),或者还可以是到任意一点c的距离,c点称为中心点,Φ(x,c) = Φ(‖x-c‖)。
任意满足 Φ(x) = Φ(‖x‖) 特性的函数 Φ 都可称为径向基函数,一般使用欧氏距离 (欧式径向基函数),其他距离也可以。最常用的径向基函数是高斯核函数,k(||x-xc||) = exp{- ||x-xc||^2/(2*σ)^2) } x_c 为核函数中心,σ 为函数的宽度参数 , 控制了函数的径向作用范围。
RBF网络是三层神经网络,其包括输入层、隐层、输出层。从输入空间到隐层空间的变换是非线性的,而从隐层空间到输出层空间变换是线性的。
RBF 基本思想:用 RBF 作为隐单元的“基”构成隐含层空间,可以将输入矢量直接映射到隐空间,不需要权连接。RBF的中心点确定后,映射关系就确定了,而隐含层空间到输出空间的映射是线性的,即网络的输出是隐单元输出的线性加权和,此处的权即为网络可调参数。
隐含层的作用是把向量从低维度的p映射到高维度的h,这样低维度线性不可分的情况到高维度就可以变得线性可分了,主要就是核函数的思想。网络由输入到输出的映射是非线性的,而网络输出对可调参数而言却又是线性的。网络的权由线性方程组解出,加快学习速度避免局部极小问题。
高斯核函数:主要是衡量两个对象的相似度;
当两个对象越接近,即 a 与 b 距离趋近于0则高斯核函数的值趋近于1,
反之则趋近于0;两个对象越相似,高斯核函数值就越大。
作用:分类时衡量各个类别的相似度, sigma 用于调整过拟合的情况,sigma参数较小时,即要求分类器将差距很小的类别也要分类,会出现过拟合问题;用于模糊控制时反映模糊集的隶属度。
参考: