通过继承定义 Layer 和 Model

Last updated: 2022-09-21, 11:02


1. 设置

import tensorflow as tf
from tensorflow import keras

2. Layer:权重和计算的结合

Layer 是 Keras 的核心类之一,它封装了状态(layer 权重)和输入到输出的转换过程(call 方法包含 layer 的前向传播的计算过程)。

下面创建一个全连接层,变量 wb 是其状态(权重):

class Linear(keras.layers.Layer):
    def __init__(self, units=32, input_dim=32):
        super(Linear, self).__init__()
        w_init = tf.random_normal_initializer()
        self.w = tf.Variable(
            initial_value=w_init(shape=(input_dim, units), dtype="float32"),
            trainable=True,
        )
        b_init = tf.zeros_initializer()
        self.b = tf.Variable(
            initial_value=b_init(shape=(units,), dtype="float32"),
            trainable=True
        )

    def call(self, inputs):
        return tf.matmul(inputs, self.w) + self.b

Layer 是可调用对象,可以像使用 Python 函数一样调用:

x = tf.ones((2, 2))
linear_layer = Linear(4, 2)
y = linear_layer(x)
print(y)
tf.Tensor(
[[ 0.01460802 -0.02662525  0.07070637 -0.01873659]
 [ 0.01460802 -0.02662525  0.07070637 -0.01873659]], shape=(2, 4), dtype=float32)

[!NOTE]wb 设置为 layer 属性后(self.w = tf.Variable(...)),layer 会自动跟踪权重。

assert linear_layer.weights == [linear_layer.w, linear_layer.b]

也可以使用 add_weight() 方法显式添加权重:

class Linear(keras.layers.Layer):
    def __init__(self, units=32, input_dim=32):
        super(Linear, self).__init__()
        self.w = self.add_weight(
            shape=(input_dim, units), initializer="random_normal", trainable=True
        )
        self.b = self.add_weight(shape=(units,), initializer="zeros", trainable=True)

    def call(self, inputs):
        return tf.matmul(inputs, self.w) + self.b


x = tf.ones((2, 2))
linear_layer = Linear(4, 2)
y = linear_layer(x)
print(y)
tf.Tensor(
[[-0.02559814  0.07031661 -0.07307922 -0.00163199]
 [-0.02559814  0.07031661 -0.07307922 -0.00163199]], shape=(2, 4), dtype=float32)

对比前面的定义,可以发现,add_weight 和定义 tf.Variable 代码形式基本一致,可以看作语法糖。

3. 不可训练权重

除了可训练权重,layer 还可以包含 non-trainable 权重。在训练时,反向传播不更新 non-trainable 权重的值。

设置 trainable=False 来添加 non-trainable 权重:

class ComputeSum(keras.layers.Layer):
    def __init__(self, input_dim):
        super(ComputeSum, self).__init__()
        self.total = tf.Variable(initial_value=tf.zeros((input_dim,)), trainable=False)

    def call(self, inputs):
        self.total.assign_add(tf.reduce_sum(inputs, axis=0))
        return self.total

x = tf.ones((2, 2))
my_sum = ComputeSum(2)
y = my_sum(x)
print(y.numpy())
y = my_sum(x)
print(y.numpy())
[2. 2.]
[4. 4.]

totallayer.weights 的一部分,但是不可训练:

print("weights:", len(my_sum.weights))
print("non-trainable weights:", len(my_sum.non_trainable_weights))
print("trainable_weights:", my_sum.trainable_weights)
weights: 1
non-trainable weights: 1
trainable_weights: []

4. 推迟 weight 的创建到输入 shape 已知

上面的 Linear layer 在 __init__() 中根据参数 input_dim 计算权重 wb 的 shape:

class Linear(keras.layers.Layer):
    def __init__(self, units=32, input_dim=32):
        super(Linear, self).__init__()
        self.w = self.add_weight(
            shape=(input_dim, units), initializer="random_normal", trainable=True
        )
        self.b = self.add_weight(shape=(units,), initializer="zeros", trainable=True)

    def call(self, inputs):
        return tf.matmul(inputs, self.w) + self.b

然而很多时候,我们事先并不知道输入 shape,因此最好能在知道输入 shape 后再创建 weights。在 Keras 中,通过在 layer 的 build(self, inputs_shape) 方法中创建 weights 实现该功能。如下:

class Linear(keras.layers.Layer):
    def __init__(self, units=32):
        super(Linear, self).__init__()
        self.units = units

    def build(self, input_shape):
        self.w = self.add_weight(
            shape=(input_shape[-1], self.units),
            initializer="random_normal",
            trainable=True,
        )
        self.b = self.add_weight(
            shape=(self.units,), initializer="random_normal", trainable=True
        )

    def call(self, inputs):
        return tf.matmul(inputs, self.w) + self.b

layer 的 __call__() 方法在第一次调用时会自动运行 build 方法。在创建 layer 时不需要提供 shape,使用更容易:

# 实例化时,不知道输入 shape
linear_layer = Linear(32)

# 第一次调用 layer 时动态创建 layer 的权重
y = linear_layer(x)

如上所示,单独实现 build() 可以很好地将权重的创建与使用分开。

然而,对一些复杂的自定义 layer,将状态的创建和计算分开几乎不可能。layer 创建者依然可以将权重的创建推迟到第一次调用 __call__(),但是要注意以后的调用使用相同的权重。另外,__call__() 第一次执行很可能在 tf.function 中,因此 __call__() 中创建任何变量都应该放在 tf.init_scope 中。

5. Layer 的递归组合

如果将一个 layer 实例作为另一个 layer 的属性,则外层 layer 会自动跟踪内层 layer 的权重。

建议在 __init__() 中创建 sublayers,权重的创建则在第一次调用 __call__() 时触发。

class MLPBlock(keras.layers.Layer):
    def __init__(self):
        super(MLPBlock, self).__init__()
        self.linear_1 = Linear(32)
        self.linear_2 = Linear(32)
        self.linear_3 = Linear(1)

    def call(self, inputs):
        x = self.linear_1(inputs)
        x = tf.nn.relu(x)
        x = self.linear_2(x)
        x = tf.nn.relu(x)
        return self.linear_3(x)


mlp = MLPBlock()
y = mlp(tf.ones(shape=(3, 64)))  # 第一次调用 `mlp` 时触发创建 weights
print("weights:", len(mlp.weights))
print("trainable weights:", len(mlp.trainable_weights))
weights: 6
trainable weights: 6

6. add_loss

可以在 call() 方法中创建在训练循环中要使用的 loss 张量,通过调用 self.add_loss(value) 实现:

# 创建输出正则化损失的 layer
class ActivityRegularizationLayer(keras.layers.Layer):
    def __init__(self, rate=1e-2):
        super(ActivityRegularizationLayer, self).__init__()
        self.rate = rate

    def call(self, inputs):
        self.add_loss(self.rate * tf.reduce_sum(inputs))
        return inputs

这些 losses (包括内部 layer 创建的 loss)可以通过 layer.losses 查询。该属性在每次调用顶层 layer 的 __call__() 方法时重置,因此 layer.losses 总是包含上次前向传播的损失值。

class OuterLayer(keras.layers.Layer):
    def __init__(self):
        super(OuterLayer, self).__init__()
        self.activity_reg = ActivityRegularizationLayer(1e-2)

    def call(self, inputs):
        return self.activity_reg(inputs)


layer = OuterLayer()
assert len(layer.losses) == 0  # 由于还没调用 layer,此时没有损失值

_ = layer(tf.zeros(1, 1))
assert len(layer.losses) == 1  # 创建一个损失值

# `layer.losses` 在 `__call__` 开头重置
_ = layer(tf.zeros(1, 1))
assert len(layer.losses) == 1  # This is the loss created during the call above

此外,loss 属性还包含内层权重正则化损失:

class OuterLayerWithKernelRegularizer(keras.layers.Layer):
    def __init__(self):
        super(OuterLayerWithKernelRegularizer, self).__init__()
        self.dense = keras.layers.Dense(
            32, kernel_regularizer=tf.keras.regularizers.l2(1e-3)
        )

    def call(self, inputs):
        return self.dense(inputs)


layer = OuterLayerWithKernelRegularizer()
_ = layer(tf.zeros((1, 1)))

# 等于 `1e-3 * sum(layer.dense.kernel ** 2)`,
# 由上面的 `kernel_regularizer` 创建
print(layer.losses)
[<tf.Tensor: shape=(), dtype=float32, numpy=0.0016654292>]

在编写训练循环时,应该考虑这些损失,例如:

# 实例化 optimizer
optimizer = tf.keras.optimizers.SGD(learning_rate=1e-3)
loss_fn = keras.losses.SparseCategoricalCrossentropy(from_logits=True)

# 迭代 batch
for x_batch_train, y_batch_train in train_dataset:
    with tf.GradientTape() as tape:
        logits = layer(x_batch_train)  # 当前 batch 的 Logits
        # 当前 batch 的 loss
        loss_value = loss_fn(y_batch_train, logits)
        # 加上前向传播的其它 loss
        loss_value += sum(model.losses)

    grads = tape.gradient(loss_value, model.trainable_weights)
    optimizer.apply_gradients(zip(grads, model.trainable_weights))

这些损失可以与 fit() 无缝配合,即如果有这些损失,它们会自动加到主损失:

import numpy as np

inputs = keras.Input(shape=(3,))
outputs = ActivityRegularizationLayer()(inputs)
model = keras.Model(inputs, outputs)

# 如果 `compile` 包含损失,则加入正则化损失
model.compile(optimizer="adam", loss="mse")
model.fit(np.random.random((2, 3)), np.random.random((2, 3)))

# 在 `compile` 中也可以不设置损失
# 因为在前向传播中使用 `add_loss` 添加了损失,即已有待最小化的 loss
model.compile(optimizer="adam")
model.fit(np.random.random((2, 3)), np.random.random((2, 3)))
1/1 [==============================] - 0s 164ms/step - loss: 0.1643
1/1 [==============================] - 0s 45ms/step - loss: 0.0303
<keras.callbacks.History at 0x18f8f9eb430>

7. add_metric

add_loss() 类似,layer 还有一个 add_metric() 方法,可用于追踪训练过程中 metric 的移动平均值。

例如,考虑下面的逻辑端点 layer,它以预测值和目标值为输入,通过 add_loss() 追踪 loss,并通过 add_metric() 追踪精度 metric:

class LogisticEndpoint(keras.layers.Layer):
    def __init__(self, name=None):
        super(LogisticEndpoint, self).__init__(name=name)
        self.loss_fn = keras.losses.BinaryCrossentropy(from_logits=True)
        self.accuracy_fn = keras.metrics.BinaryAccuracy()

    def call(self, targets, logits, sample_weights=None):
        # 计算训练时损失,并使用 `self.add_loss()` 添加到 layer
        loss = self.loss_fn(targets, logits, sample_weights)
        self.add_loss(loss)

        # 计算精度,并使用 `self.add_metric()` 添加到 layer
        acc = self.accuracy_fn(targets, logits, sample_weights)
        self.add_metric(acc, name="accuracy")

        # 返回预测张量
        return tf.nn.softmax(logits)

以这种方式记录的 metric 可以用 layer.metrics 查询:

layer = LogisticEndpoint()

targets = tf.ones((2, 2))
logits = tf.ones((2, 2))
y = layer(targets, logits)

print("layer.metrics:", layer.metrics)
print("current accuracy value:", float(layer.metrics[0].result()))
layer.metrics: [<keras.metrics.metrics.BinaryAccuracy object at 0x0000018F8F2EAF10>]
current accuracy value: 1.0

add_loss() 一样,fit() 会自动记录这些 metric:

inputs = keras.Input(shape=(3,), name="inputs")
targets = keras.Input(shape=(10,), name="targets")
logits = keras.layers.Dense(10)(inputs)
predictions = LogisticEndpoint(name="predictions")(logits, targets)

model = keras.Model(inputs=[inputs, targets], outputs=predictions)
model.compile(optimizer="adam")

data = {
    "inputs": np.random.random((3, 3)),
    "targets": np.random.random((3, 10)),
}
model.fit(data)
1/1 [==============================] - 0s 387ms/step - loss: 0.8445 - binary_accuracy: 0.0000e+00
<keras.callbacks.History at 0x18f8ff26220>

8. layer 序列化

如果需要将自定义 layer 作为函数 API 的一部分序列化,需要实现 get_config() 方法:

class Linear(keras.layers.Layer):
    def __init__(self, units=32):
        super(Linear, self).__init__()
        self.units = units

    def build(self, input_shape):
        self.w = self.add_weight(
            shape=(input_shape[-1], self.units),
            initializer="random_normal",
            trainable=True,
        )
        self.b = self.add_weight(
            shape=(self.units,), initializer="random_normal", trainable=True
        )

    def call(self, inputs):
        return tf.matmul(inputs, self.w) + self.b

    def get_config(self):
        return {"units": self.units}


# 使用 config 重新创建 layer
layer = Linear(64)
config = layer.get_config()
print(config)
new_layer = Linear.from_config(config)
{'units': 64}

基类 Layer__init__() 方法包含一些关键字参数,如 namedtype。最好在 __init__() 中将这些参数 **kwargs 传递给父类:

class Linear(keras.layers.Layer):
    def __init__(self, units=32, **kwargs):
        super(Linear, self).__init__(**kwargs)
        self.units = units

    def build(self, input_shape):
        self.w = self.add_weight(
            shape=(input_shape[-1], self.units),
            initializer="random_normal",
            trainable=True,
        )
        self.b = self.add_weight(
            shape=(self.units,), initializer="random_normal", trainable=True
        )

    def call(self, inputs):
        return tf.matmul(inputs, self.w) + self.b

    def get_config(self):
        config = super(Linear, self).get_config()
        config.update({"units": self.units})
        return config


layer = Linear(64)
config = layer.get_config()
print(config)
new_layer = Linear.from_config(config)
{'name': 'linear_7', 'trainable': True, 'dtype': 'float32', 'units': 64}

如果需要自定义从 config 反序列化 layer 的行为,则可以覆盖 from_config() 类方法。下面是 from_config() 的基本实现:

def from_config(cls, config):
  return cls(**config)

9. call() 方法的 training 参数

某些 layer,特别是 BatchNormalizationDropout,在训练和推理时的行为不同。对这类 layer,标准做法是在 call() 发方法中公开 training 参数:

class CustomDropout(keras.layers.Layer):
    def __init__(self, rate, **kwargs):
        super(CustomDropout, self).__init__(**kwargs)
        self.rate = rate

    def call(self, inputs, training=None):
        if training:
            return tf.nn.dropout(inputs, rate=self.rate)
        return inputs

10. call() 方法的 mask 参数

在所有的 Keras RNN layer 中都可以找到 mask 参数。mask 是一个布尔张量,输入的每个时间步对应一个布尔值,用于在处理时间序列数据时跳过输入中某些时间步。

对支持 mask 的 layer,Keras 会自动将上一层生成的 mask 以正确的参数形式传递给 __call__() 方法。生成 mask 的 layer 包括配置 mask_zero=TrueEmbedding layer 和 Masking layer。

11. Model 类

通常使用 Layer 类定义内部计算;使用 Model 类定义外部模型,即需要训练的对象。

例如,在 ResNet50 模型中,包含多个继承 Layer 的 ResNet block,以及包含整个 ResNet50 网络的单个 Model

Model 类与 Layer 具有相同的 API,包含如下差别:

  • 包含内置的训练、评估和推理循环,即 model.fit(), model.evaluate()model.predict()
  • 通过 model.layers 属性,公开其内部 layers
  • 包含保存和序列化 API save(), save_weights()

实际上,Layer 类对应于文献中的 “layer”,如卷积层、循环层等,或者块(block),如 ResNet block, Inception block;而 Model 类对应文献中的 “model”,即深度学习模型,或深度神经网络。

那么是使用 Layer 还是 Model 类呢?就看是否需要调用 fit(),是否需要 save(),如果是,就选择 Model;如果否,比如你定义的类是某个更大系统的一部分,或者你准备自己编写循环和保存代码,则使用 Layer

例如,以上面的 mini-resnet 为例,使用它构建 Model,这样就可以使用 fit() 训练模型,使用 save_weights() 保存权重:

class ResNet(tf.keras.Model):
    def __init__(self, num_classes=1000):
        super(ResNet, self).__init__()
        self.block_1 = ResNetBlock()
        self.block_2 = ResNetBlock()
        self.global_pool = layers.GlobalAveragePooling2D()
        self.classifier = Dense(num_classes)

    def call(self, inputs):
        x = self.block_1(inputs)
        x = self.block_2(x)
        x = self.global_pool(x)
        return self.classifier(x)


resnet = ResNet()
dataset = ...
resnet.fit(dataset, epochs=10)
resnet.save(filepath)

12. 完整示例

对上面的内容进行总结:

  • Layer 封装了状态(在 __init__()build() 中创建)和计算(在 call() 中定义)
  • layer 可以递归嵌套,以创建更大的计算 block
  • layer 可以通过 add_loss()add_metric() 记录 loss(通常是正则化损失)和 metric
  • Model 为外层容器,是需要训练的对象。ModelLayer 类似,但是增加了训练和序列化功能。

现在我们将所有这些组合在一起,创建一个端到端的示例,实现一个变分自动编码器(Variational AutoEncoder, VAE),并在 MNIST 数据集上训练。

VAE 继承 Model 类,由 Layer 的子类嵌套组成。它包含正则化损失(KL divergence)。

from tensorflow.keras import layers

class Sampling(layers.Layer):
    """Uses (z_mean, z_log_var) to sample z, the vector encoding a digit."""
    def call(self, inputs):
        z_mean, z_log_var = inputs
        batch = tf.shape(z_mean)[0]
        dim = tf.shape(z_mean)[1]
        epsilon = tf.keras.backend.random_normal(shape=(batch, dim))
        return z_mean + tf.exp(0.5 * z_log_var) * epsilon


class Encoder(layers.Layer):
    """Maps MNIST digits to a triplet (z_mean, z_log_var, z)."""
    def __init__(self, latent_dim=32, intermediate_dim=64, name="encoder", **kwargs):
        super(Encoder, self).__init__(name=name, **kwargs)
        self.dense_proj = layers.Dense(intermediate_dim, activation="relu")
        self.dense_mean = layers.Dense(latent_dim)
        self.dense_log_var = layers.Dense(latent_dim)
        self.sampling = Sampling()

    def call(self, inputs):
        x = self.dense_proj(inputs)
        z_mean = self.dense_mean(x)
        z_log_var = self.dense_log_var(x)
        z = self.sampling((z_mean, z_log_var))
        return z_mean, z_log_var, z


class Decoder(layers.Layer):
    """Converts z, the encoded digit vector, back into a readable digit."""
    def __init__(self, original_dim, intermediate_dim=64, name="decoder", **kwargs):
        super(Decoder, self).__init__(name=name, **kwargs)
        self.dense_proj = layers.Dense(intermediate_dim, activation="relu")
        self.dense_output = layers.Dense(original_dim, activation="sigmoid")

    def call(self, inputs):
        x = self.dense_proj(inputs)
        return self.dense_output(x)


class VariationalAutoEncoder(keras.Model):
    """Combines the encoder and decoder into an end-to-end model for training."""
    def __init__(
            self,
            original_dim,
            intermediate_dim=64,
            latent_dim=32,
            name="autoencoder",
            **kwargs
    ):
        super(VariationalAutoEncoder, self).__init__(name=name, **kwargs)
        self.original_dim = original_dim
        self.encoder = Encoder(latent_dim=latent_dim, intermediate_dim=intermediate_dim)
        self.decoder = Decoder(original_dim, intermediate_dim=intermediate_dim)

    def call(self, inputs):
        z_mean, z_log_var, z = self.encoder(inputs)
        reconstructed = self.decoder(z)
        # Add KL divergence regularization loss.
        kl_loss = -0.5 * tf.reduce_mean(
            z_log_var - tf.square(z_mean) - tf.exp(z_log_var) + 1
        )
        self.add_loss(kl_loss)
        return reconstructed

在 MNIST 上编写一个简单的训练循环:

original_dim = 784
vae = VariationalAutoEncoder(original_dim, 64, 32)

optimizer = tf.keras.optimizers.Adam(learning_rate=1e-3)
mse_loss_fn = tf.keras.losses.MeanSquaredError()

loss_metric = tf.keras.metrics.Mean()

(x_train, _), _ = tf.keras.datasets.mnist.load_data()
x_train = x_train.reshape(60000, 784).astype("float32") / 255

train_dataset = tf.data.Dataset.from_tensor_slices(x_train)
train_dataset = train_dataset.shuffle(buffer_size=1024).batch(64)

epochs = 2

# Iterate over epochs.
for epoch in range(epochs):
    print("Start of epoch %d" % (epoch,))

    # Iterate over the batches of the dataset.
    for step, x_batch_train in enumerate(train_dataset):
        with tf.GradientTape() as tape:
            reconstructed = vae(x_batch_train)
            # Compute reconstruction loss
            loss = mse_loss_fn(x_batch_train, reconstructed)
            loss += sum(vae.losses)  # Add KLD regularization loss

        grads = tape.gradient(loss, vae.trainable_weights)
        optimizer.apply_gradients(zip(grads, vae.trainable_weights))

        loss_metric(loss)

        if step % 100 == 0:
            print("step %d: mean loss = %.4f" % (step, loss_metric.result()))
Start of epoch 0
step 0: mean loss = 0.3316
step 100: mean loss = 0.1255
step 200: mean loss = 0.0991
step 300: mean loss = 0.0891
step 400: mean loss = 0.0842
step 500: mean loss = 0.0809
step 600: mean loss = 0.0787
step 700: mean loss = 0.0771
step 800: mean loss = 0.0760
step 900: mean loss = 0.0750
Start of epoch 1
step 0: mean loss = 0.0747
step 100: mean loss = 0.0740
step 200: mean loss = 0.0735
step 300: mean loss = 0.0730
step 400: mean loss = 0.0727
step 500: mean loss = 0.0723
step 600: mean loss = 0.0720
step 700: mean loss = 0.0717
step 800: mean loss = 0.0715
step 900: mean loss = 0.0712

由于 VAE 是 Model 的子类,因此它内置有训练循环。所以也可以按如下方法训练:

vae = VariationalAutoEncoder(784, 64, 32)

optimizer = tf.keras.optimizers.Adam(learning_rate=1e-3)

vae.compile(optimizer, loss=tf.keras.losses.MeanSquaredError())
vae.fit(x_train, x_train, epochs=2, batch_size=64)
Epoch 1/2
938/938 [==============================] - 5s 5ms/step - loss: 0.0750
Epoch 2/2
938/938 [==============================] - 5s 5ms/step - loss: 0.0676
<keras.callbacks.History at 0x18f8f7f5790>

13. 函数 API

上面的示例是面向对象的代码风格,也可以使用函数 API 构建模型。最重要的是,这两种风格的 API 不是互斥的,它们可以混合搭配使用。

例如,下面的函数 API 示例重用上面定义的 Sampling layer:

original_dim = 784
intermediate_dim = 64
latent_dim = 32

# Define encoder model.
original_inputs = tf.keras.Input(shape=(original_dim,), name="encoder_input")
x = layers.Dense(intermediate_dim, activation="relu")(original_inputs)
z_mean = layers.Dense(latent_dim, name="z_mean")(x)
z_log_var = layers.Dense(latent_dim, name="z_log_var")(x)
z = Sampling()((z_mean, z_log_var))
encoder = tf.keras.Model(inputs=original_inputs, outputs=z, name="encoder")

# Define decoder model.
latent_inputs = tf.keras.Input(shape=(latent_dim,), name="z_sampling")
x = layers.Dense(intermediate_dim, activation="relu")(latent_inputs)
outputs = layers.Dense(original_dim, activation="sigmoid")(x)
decoder = tf.keras.Model(inputs=latent_inputs, outputs=outputs, name="decoder")

# Define VAE model.
outputs = decoder(z)
vae = tf.keras.Model(inputs=original_inputs, outputs=outputs, name="vae")

# Add KL divergence regularization loss.
kl_loss = -0.5 * tf.reduce_mean(z_log_var - tf.square(z_mean) - tf.exp(z_log_var) + 1)
vae.add_loss(kl_loss)

# Train.
optimizer = tf.keras.optimizers.Adam(learning_rate=1e-3)
vae.compile(optimizer, loss=tf.keras.losses.MeanSquaredError())
vae.fit(x_train, x_train, epochs=3, batch_size=64)
Epoch 1/3
938/938 [==============================] - 5s 5ms/step - loss: 0.0746
Epoch 2/3
938/938 [==============================] - 4s 5ms/step - loss: 0.0676
Epoch 3/3
938/938 [==============================] - 4s 5ms/step - loss: 0.0676
<keras.callbacks.History at 0x190485e1670>

14. 参考

  • https://www.tensorflow.org/guide/keras/custom_layers_and_models
  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值