第五周--机器学习数学基础之Python矩阵运算

一、梯度下降法的原理

(一)梯度下降法

梯度下降(gradient descent)主要目的是通过迭代找到目标函数的最小值,或者收敛到最小值。所以,它是一种常用的求解无约束最优化问题的方法,在最优化、统计学以及机器学习等领域有着广泛的应用。

(二)梯度

在向量微积分中,标量场的梯度是一个向量场。标量场中某一点的梯度指向在这点标量场增长最快的方向(当然要比较的话必须固定方向的长度),梯度的绝对值是长度为1的方向中函数最大的增加率,也就是说 ,其中 代表方向导数。以另一观点来看,由多变量的泰勒展开式可知,从欧几里得空间Rn到R的函数的梯度是在Rn某一点最佳的线性近似。在这个意义上,梯度是雅可比矩阵的一个特殊情况。
在单变量的实值函数的情况,梯度只是导数,或者,对于一个线性函数,也就是线的斜率。
梯度一词有时用于斜度,也就是一个曲面沿着给定方向的倾斜程度。可以通过取向量梯度和所研究的方向的内积来得到斜度。梯度的数值有时也被称为梯度。

( 三)梯度的概念

(1)微分
微分的含义
微分在数学中的定义:由函数B=f(A),得到A、B两个数集,在A中当dx靠近自己时,函数在dx处的极限叫作函数在dx处的微分,微分的中心思想是无穷分割。

(四)梯度下降算法原理

批量梯度下降法(Batch Gradient Descent, BGD)
批量梯度下降法在计算优化函数的梯度时利用全部样本数据,n表示总的样本数
在这里插入图片描述
小批量梯度下降法(Mini-batch Gradient Descent, MBGD)
随机梯度下降法在计算优化函数的梯度时利用随机选择的一个样本数据
在这里插入图片描述
随机梯度下降法(Stochastic Gradient Descent, SGD)
小批量梯度下降法在计算优化函数的梯度时利用随机选择的一部分样本数据,k表示选取样本的数目
在这里插入图片描述

二、梯度下降法的一般求解步骤

一般求解步骤
在这里插入图片描述

三、Excel梯度下降法求解

求:z=2(x-1)^2 + y^2的近似根

如下图,学习率为0.01
在这里插入图片描述
设置(x,y)的初始值为(2,1)
其他表格输入相应的计算公式
在这里插入图片描述
其他位置的按照公式输入相应的内容,然后安装从左向右的顺序,向下拉取多格
多次迭代结果
当学习率取0.1的时候,迭代2000多次仍旧没有出现函数值为0的情况,所以更改学习率为0.15
结果
在这里插入图片描述
由此,可得到其近似值为(1,0),迭代很多次才得到想要的结果。

四、线性回归求解

3.1 梯度下降法求解
定义一个代价函数J(Θ)=在这里插入图片描述
代码
定义数据集和学习率

#导入bumpy包
from numpy import *
#定义别名
import numpy as np
# 定义数据集的大小 即20个数据点
m = 20
# x的坐标以及对应的矩阵
X0 = ones((m, 1))  # 生成一个m行1列的向量,其值全是1
X1 = arange(1, m+1).reshape(m, 1)  # 生成一个m行1列的向量,也就是x1,从1到m
X = hstack((X0, X1))  # 按照列堆叠形成数组,其实就是样本数据
# 对应的y坐标
Y = np.array([
    3, 4, 5, 5, 2, 4, 7, 8, 11, 8, 12,
    11, 13, 13, 16, 17, 18, 17, 19, 21
]).reshape(m, 1)
# 学习率
alpha = 0.01
import matplotlib.pyplot as plt
#绘制出数据集
plt.scatter(X1,Y,color='red')
plt.show()

在这里插入图片描述
以矩阵向量的形式定义代价函数和代价函数的梯度

# 定义代价函数
#损失函数(loss function)或代价函数(cost function)是将随机事件或其有关随机变量的取值映射为非负实数以表示该随机事件的“风险”或“损失”的函数
def cost_function(theta, X, Y):
    diff = dot(X, theta) - Y  # dot() 数组需要像矩阵那样相乘,就需要用到dot()
    return (1/(2*m)) * dot(diff.transpose(), diff)

算法的核心部分,梯度下降迭代计算

# 梯度下降迭代
def gradient_descent(X, Y, alpha):
    #将[1,1]变为2行1列的形式
    theta = array([1, 1]).reshape(2, 1)
    #得到代价函数的初始梯度
    gradient = gradient_function(theta, X, Y)
    #不断迭代的过程
    while not all(abs(gradient) <= 1e-5):
    	#更新迭代公式
        theta = theta - alpha * gradient
        #更新迭代所用的梯度
        gradient = gradient_function(theta, X, Y)
    return theta

#梯度下降最终的结果
optimal = gradient_descent(X, Y, alpha)
print('optimal:\t', optimal)
print('cost function:', cost_function(optimal, X, Y)[0][0])
# 定义代价函数对应的梯度函数
def gradient_function(theta, X, Y):
    diff = dot(X, theta) - Y
    return (1/m) * dot(X.transpose(), diff)

通过matplotlib画出图像

# 根据数据画出对应的图像
def plot(X, Y, theta):
    ax = plt.subplot(111)  # 将画布分为1行1列,取第一个
    ax.scatter(X, Y, s=30, c="red", marker="s")
    plt.xlabel("X")
    plt.ylabel("Y")
    x = arange(0, 21, 0.2)  # x的范围
    y = theta[0] + theta[1]*x
    ax.plot(x, y)
    plt.show()

plot(X1, Y, optimal)

参考资料

机器学习数学基础之Python矩阵运算
梯度下降法求解极小值、近似根、最小二乘法

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值