[模版] K/最近邻匹配(KD Tree)

本文介绍了如何利用KD Tree进行2D空间的最近邻查找,并探讨了在K维空间中的Q近邻匹配方法。 nth_element函数在此过程中起到了关键作用,类似于快速排序中选择枢轴的过程。
摘要由CSDN通过智能技术生成

nth_element相当于快排的split/choose pivot过程

2D 最近
#include <bits/stdc++.h>
#define mem(a,b) memset(a,b,sizeof(a))
const int INF=0x3f3f3f3f;
const int maxn=1e5+50;
typedef long long ll;
using namespace std;

int cmpNo;
struct Node{
    int x[2],l,r,id;
    bool operator <(const Node &b)const{
        return x[cmpNo]<b.x[cmpNo];
    }
};

ll calDis(Node &l,Node &r){
    ll dx=l.x[0]-r.x[0],dy=l.x[1]-r.x[1];
    return dx*dx+dy*dy;
}

Node p[maxn];

int Build(int l,int r,int d){
    if(l>r)return 0;
    cmpNo=d;
    int mid=l+r>>1;
    nth_element(p+l,p+mid,p+r+1);
    p[mid].l=Build(l,mid-1,1-d);
    p[mid].r=Build(mid+1,r,1-d);
    return mid;
}

ll ansDist;
int<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值