文章对应视频讲解:(Jacobi)雅克比迭代法
一、Jacobi迭代法
n
=
3
n=3
n=3 , 阶数为 3 时
A
=
(
a
11
a
12
a
13
a
21
a
22
a
23
a
31
a
32
a
33
)
,
b
=
(
b
1
b
2
b
3
)
,
A=\begin{pmatrix} a_{11} & a_{12} &a_{13}\\ a_{21} & a_{22} &a_{23}\\ a_{31} & a_{32} &a_{33}\\ \end{pmatrix} ,\quad b=\begin{pmatrix} b_1\\b_2\\ b_3 \end{pmatrix},
A=
a11a21a31a12a22a32a13a23a33
,b=
b1b2b3
,
Jacobi公式为
x
1
(
k
+
1
)
=
b
1
−
a
12
x
2
(
k
)
−
a
13
x
3
(
k
)
a
11
x
2
(
k
+
1
)
=
b
2
−
a
21
x
1
(
k
)
−
a
23
x
3
(
k
)
a
22
x
3
(
k
+
1
)
=
b
3
−
a
31
x
1
(
k
)
−
a
32
x
2
(
k
)
a
33
\begin{gathered} x_1^{(k+1)} =\frac{b_{1}-a_{12}x_{2}^{(k)}-a_{13}x_{3}^{(k)}}{a_{11}} \\ x_2^{(k+1)} =\frac{b_{2}-a_{21}x_{1}^{(k)}-a_{23}x_{3}^{(k)}}{a_{22}} \\ x_3^{(k+1)} =\frac{b_{3}-a_{31}x_{1}^{(k)}-a_{32}x_{2}^{(k)}}{a_{33}} \end{gathered}
x1(k+1)=a11b1−a12x2(k)−a13x3(k)x2(k+1)=a22b2−a21x1(k)−a23x3(k)x3(k+1)=a33b3−a31x1(k)−a32x2(k)
由公式可以看出 ,每一次迭代的各个分量都是独立计算的,这也是为什么Jacobi迭代可以用于并行计算。
或等价的,将
A
A
A 分解为
A
=
D
−
L
−
U
A=D-L-U
A=D−L−U,其中
D
=
d
i
a
g
(
a
11
,
a
22
,
a
33
)
,
D=diag(a_{11},a_{22},a_{33}),
D=diag(a11,a22,a33),
L
=
−
[
0
0
0
a
21
0
0
a
31
a
32
0
]
,
U
=
−
[
0
a
12
a
13
0
0
a
23
0
0
0
]
.
L=-\begin{bmatrix} 0 & 0 &0\\ a_{21} & 0&0\\ a_{31} & a_{32} &0\\ \end{bmatrix},\quad U=-\begin{bmatrix} 0 & a_{12} &a_{13}\\ 0 & 0&a_{23}\\ 0 & 0 &0\\ \end{bmatrix}.
L=−
0a21a3100a32000
,U=−
000a1200a13a230
.
(
D
−
L
−
U
)
x
=
b
D
x
=
b
+
(
L
+
U
)
x
x
=
D
−
1
(
b
+
(
L
+
U
)
x
)
\begin{gathered} (D-L-U)x = b\\ Dx = b+(L+U)x\\ x=D^{-1}(b+(L+U)x)\\ \end{gathered}
(D−L−U)x=bDx=b+(L+U)xx=D−1(b+(L+U)x)
得Jacobi公式
x
(
k
+
1
)
=
D
−
1
(
b
+
(
L
+
U
)
x
(
k
)
)
x^{(k+1)}=D^{-1}(b+(L+U)x^{(k)})
x(k+1)=D−1(b+(L+U)x(k))
写成矩阵的形式
[
x
1
(
k
+
1
)
x
2
(
k
+
1
)
x
3
(
k
+
1
)
]
=
[
1
a
11
1
a
22
1
a
33
]
(
[
b
1
b
2
b
3
]
−
[
a
12
a
13
a
21
a
23
a
31
a
32
]
[
x
1
(
k
)
x
2
(
k
)
x
3
(
k
)
]
)
\begin{bmatrix} x_1^{(k+1)}\\x_2^{(k+1)}\\ x_3^{(k+1)} \end{bmatrix} = \begin{bmatrix} \frac{1}{a_{11}} & &\\ & \frac{1}{a_{22}} &\\ & &\frac{1}{a_{33}}\\ \end{bmatrix}\left( \begin{bmatrix} b_1\\b_2\\ b_3 \end{bmatrix}-\begin{bmatrix} & a_{12} &a_{13}\\ a_{21} & &a_{23}\\ a_{31} & a_{32} &\\ \end{bmatrix}\begin{bmatrix} x_1^{(k)}\\x_2^{(k)}\\ x_3^{(k)} \end{bmatrix}\right)
x1(k+1)x2(k+1)x3(k+1)
=
a111a221a331
b1b2b3
−
a21a31a12a32a13a23
x1(k)x2(k)x3(k)
下面是其一般形式下的算法
二、算法
💖 Jacobi迭代法
主要思路
输入:
A
,
b
,
x
(
0
)
A,b,x^{(0)}
A,b,x(0),输出
x
x
x
x
(
0
)
=
initial vector
x
(
k
+
1
)
=
D
−
1
(
b
+
(
L
+
U
)
x
(
k
)
)
\begin{aligned} x^{(0)} &= \text{ initial vector } \\ x^{(k+1)} &= D^{-1}(b+(L+U)x^{(k)}) \end{aligned}
x(0)x(k+1)= initial vector =D−1(b+(L+U)x(k))
添加一些限制
- 容许误差 e_tol
- 最大迭代步 N N N
当 残差 < e_tol 或 迭代步数 ≥ N \geq N ≥N 时,停止迭代,输出结果
实现步骤
- 步骤 1: k = 0 k=0 k=0, x = x ( 0 ) x=x^{(0)} x=x(0);
- 步骤 2: 计算残差
r
=
∥
b
−
A
x
∥
r=\|b-Ax\|
r=∥b−Ax∥,
- 如果残差 r r r > e_tol 且 k < N k<N k<N,转步骤 3;
- 否则,转步骤 5;
- 步骤 3: 更新解向量
x = D − 1 ( b + ( L + U ) x ( 0 ) ) x=D^{-1}(b+(L+U)x^{(0)}) x=D−1(b+(L+U)x(0)) - 步骤 4: x 0 = x x0=x x0=x, k = k + 1 k=k+1 k=k+1,转步骤 2;
- 步骤 5: 输出 x x x。
三、北太天元 or matlab 实现
Jacobi迭代
function [x,k,r] = myJacobi(A,b,x0,e_tol,N)
% Jacobi迭代法解线性方程组
% Input: A, b(列向量), x0(初始值)
% e_tol: error tolerant
% N: 限制迭代次数小于 N 次
% Output: x , k(迭代次数),r:残差
% Version: 1.0
% last modified: 01/27/2024
n = length(b); k = 0;
x=zeros(n,N); % 记录每一次迭代的结果,方便后续作误差分析
x(:,1)=x0;
L = -tril(A,-1); U = -triu(A,1); D = diag(diag(A));
r = norm(b - A*x,2);
while r > e_tol && k < N
x(:,k+2) = inv(D)*(b+(L+U)*x(:,k+1));
r = norm(b - A*x(:,k+2),2); % 残差
k = k+1;
end
x = x(:,2:k+1); % x取迭代时的结果
if k>N
fprintf('迭代超出最大迭代次数');
else
fprintf('迭代次数=%i\n',k);
end
end
保存为 myJacobi.m
文件
四、数值算例
例1
A
x
=
b
Ax=b
Ax=b,求
x
x
x
A
=
(
10
−
1
2
0
−
1
11
−
1
3
2
−
1
10
−
1
0
3
−
1
8
)
b
=
(
6
25
−
11
15
)
A = \begin{pmatrix} 10 & -1 & 2 & 0 \\ -1 & 11 & -1 & 3 \\ 2 & -1 & 10 & -1 \\ 0 & 3 & -1 & 8 \\ \end{pmatrix}\quad b = \begin{pmatrix} 6 \\ 25 \\ -11 \\ 15 \\ \end{pmatrix}
A=
10−120−111−132−110−103−18
b=
625−1115
用Gauss列主元消去法,得
x =
1.000000000000000
2.000000000000000
-1.000000000000000
1.000000000000000
下面我们用Jacobi迭代法进行求解
设 N = 100 , e_tol = 1e-8, x0=[0; 0; 0; 0]
clc;clear all,format long;
N = 100; e_tol = 1e-8;
A=[10 -1 2 0; -1 11 -1 3; 2 -1 10 -1; 0 3 -1 8];
b=[6; 25; -11; 15];
x0=[0; 0; 0; 0];
t1 =tic;
[x11,k1] = myJacobi(A,b,x0,e_tol,N)
toc(t1);
t2 = tic;
[x12] = gsem_column(A,b)
toc(t2);
% 作图查看误差变化
x_exact=[1;2;-1;1]; %真解
n = length(b);
error=zeros(n,k1);% 每个分量的误差
error = abs(x_exact - x11)
res =zeros(1,k1); % 残差
for i=1:1:k1
res(i) = norm(b-A*x11(:,i),2);
end
% 数值解
figure(1);
plot(1:k1,x11(1,:),'-*r',1:k1,x11(2,:),'-og', 1:k1,x11(3,:),'-+b',1:k1,x11(4,:),'-dk');
legend('x_1','x_2','x_3','x_4');
title('每个数值解的变化')
% 残差变化
figure(2);
plot(1:k1,res,'-*r');
legend('残差');
title('残差变化')
% 误差
figure(3);
plot(1:k1,error(1,:),'-*r',1:k1,error(2,:),'-og', 1:k1,error(3,:),'-+b',1:k1,error(4,:),'-dk');
legend('x_1','x_2','x_3','x_4');
title('误差变化')
得
迭代次数=26
例2
[
3
−
1
0
0
0
1
2
−
1
3
−
1
0
1
2
0
0
−
1
3
−
1
0
0
0
0
−
1
3
−
1
0
0
1
2
0
−
1
3
−
1
1
2
0
0
0
−
1
3
]
[
x
1
x
2
x
3
x
4
x
4
x
5
x
6
]
=
[
5
2
3
2
1
1
3
2
5
2
]
.
\begin{bmatrix}3&-1&0&0&0&\frac{1}{2}\\-1&3&-1&0&\frac{1}{2}&0\\0&-1&3&-1&0&0\\0&0&-1&3&-1&0\\0&\dfrac{1}{2}&0&-1&3&-1\\\frac{1}{2}&0&0&0&-1&3\end{bmatrix}\begin{bmatrix}x_1\\x_2\\x_3\\x_4\\x_4\\x_5\\x_6\end{bmatrix}=\begin{bmatrix}\frac{5}{2}\\ \frac{3}{2}\\1\\1\\\frac{3}{2}\\\frac{5}{2}\end{bmatrix}.
3−100021−13−102100−13−10000−13−100210−13−121000−13
x1x2x3x4x4x5x6
=
2523112325
.
使用Gauss消去法与Jacobi迭代法分别对其进行求解,并观察有何差异。
试着得到在更高阶数下的结果。
x x x的真解为 [ 1 , 1 , 1 , 1 , 1 , 1 ] T [1,1,1,1,1,1]^T [1,1,1,1,1,1]T
稀疏矩阵的构造:
function [A,b,x_sp] = setup_Sparse1(n)
% 定义一个 n 阶的稀疏矩阵, 真解全为1
% Input: n
% Output: A,b
%
% Version: 1.0
% last modified: 09/28/2023
A = zeros(n,n);b = ones(n,1) * 1.5;
b([1,n],1) = 2.5; b([n/2,n/2 + 1],1) = 1;
x_sp = ones(n,1); % 真解
for i = 1:1:n
A(i,n+1-i) = 1/2;
A(i,i) = 3;
end
for i =1:1:n-1
A(i,i+1)= -1;A(i+1,i)= -1;
end
end
保存为 setup_Sparse1.m
文件
实现代码
%% 测试 消去法 与 迭代法 在处理稀疏矩阵问题上的差距
clc;clear all,format long;
N = 100; e_tol = 1e-8;
n = 6; % n 为 6 50 100 500 1000
[A,b,x]=setup_Sparse1(n);
x0 = zeros(n,1);
t1 =tic;
[x11,k1,r1] = myJacobi(A,b,x0,e_tol,N);
toc(t1);
t2 = tic;
[x12] = gsem_column(A,b);
toc(t2);
r2 = norm(b-A*x12);
结果如下:
n=6时
- Jacobi迭代次数为33次,耗时 0.254356 秒。 r = 8.383869485405770 e − 09 r= 8.383869485405770e-09 r=8.383869485405770e−09
- Gauss列主元耗时 0.246983 秒。 r = 0 r=0 r=0
n=50时
- Jacobi迭代次数为84次,耗时 0.252936 秒。 r = 8.506205291756777 e − 09 r= 8.506205291756777e-09 r=8.506205291756777e−09
- Gauss列主元耗时 0.499854 秒。 r = 5.197930934883577 e − 15 r=5.197930934883577e-15 r=5.197930934883577e−15
n=100时
- Jacobi迭代次数为84次,耗时 1.017717 秒。 r = 9.969971572640032 e − 09 r= 9.969971572640032e-09 r=9.969971572640032e−09
- Gauss列主元耗时 1.121281 秒。 r = 7.077617359078848 e − 15 r=7.077617359078848e-15 r=7.077617359078848e−15
n=500时
- Jacobi迭代次数为84次,耗时 20.812204 秒。 r = 9.964771950043455 e − 09 r= 9.964771950043455e-09 r=9.964771950043455e−09
- Gauss列主元耗时 21.329216 秒。 r = 8.862333997095065 e − 15 r=8.862333997095065e-15 r=8.862333997095065e−15
n=1000时
- Jacobi迭代次数为84次,耗时 34.252031 秒。 r = 9.964771950894769 e − 09 r= 9.964771950894769e-09 r=9.964771950894769e−09
- Gauss列主元耗时 89.985333 秒。 r = 1.072960336432300 e − 14 r=1.072960336432300e-14 r=1.072960336432300e−14
可以看出,随着稀疏矩阵规模的不断增大,迭代法相比直接法的优势越来越明显。
直接法即能够在有限步内完成计算,随着阶数增大,(gauss消去法运算量
O
(
n
3
)
O(n^3)
O(n3)),所需步数,指数级增加。
而Jacobi迭代法,只需把精度控制在所需范围内即算完成任务,能够节约很多时间。