【机械】基于三自由度二连杆力矩控制Matlab仿真

✅作者简介:热爱数据处理、数学建模、算法创新的Matlab仿真开发者。

🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室

🍊个人信条:格物致知。

🔥 内容介绍

摘要: 本文针对三自由度二连杆机械臂系统,研究基于力矩控制的轨迹跟踪问题。首先,建立了二连杆机械臂的动力学模型,推导出其动力学方程,并分析了系统特性。然后,设计了基于PD控制算法的力矩控制器,并利用Matlab软件进行仿真,验证了所设计控制器的有效性。通过仿真实验,分析了不同控制参数对系统性能的影响,并对仿真结果进行了详细的讨论。最终,本文得出结论,所设计的基于PD控制的力矩控制器能够有效地控制三自由度二连杆机械臂实现期望轨迹的跟踪,并为实际应用提供了理论参考。

1. 引言

机器人技术在工业自动化、医疗手术、空间探索等领域得到了广泛应用。作为机器人系统的重要组成部分,机械臂的运动控制是研究的重点。机械臂的控制精度和速度直接影响着整个系统的性能。传统的PID控制算法简单易行,但其性能受参数的影响较大,难以满足高精度控制的要求。而力矩控制能够直接控制关节力矩,从而提高控制精度和鲁棒性,成为近年来机械臂控制领域的研究热点。

本文研究对象为三自由度二连杆机械臂,其具有典型的非线性、耦合特性。本文将建立该机械臂的动力学模型,设计基于PD控制算法的力矩控制器,并利用Matlab进行仿真分析,验证控制器的有效性,并探讨不同控制参数对系统性能的影响。

2. 二连杆机械臂动力学建模

假设二连杆机械臂质量集中于连杆末端,忽略关节摩擦力及其他非线性因素,利用拉格朗日方程建立其动力学模型。

设连杆长度分别为l1和l2,质量分别为m1和m2,关节角分别为θ1和θ2。则系统的广义坐标为q = [θ1, θ2]<sup>T</sup>,广义速度为𝑞˙=[𝜃1˙,𝜃2˙]𝑇q˙=[θ1˙,θ2˙]T。系统的动能T和势能V分别为:

𝑇=12𝑚1𝑙12𝜃1˙2+12𝑚2[(𝑙12𝜃1˙2+𝑙22𝜃2˙2+2𝑙1𝑙2𝜃1˙𝜃2˙cos⁡(𝜃2−𝜃1))]T=21m1l12θ1˙2+21m2[(l12θ1˙2+l22θ2˙2+2l1l2θ1˙θ2˙cos(θ2−θ1))]

𝑉=𝑚1𝑔𝑙1cos⁡(𝜃1)+𝑚2𝑔(𝑙1cos⁡(𝜃1)+𝑙2cos⁡(𝜃1+𝜃2))V=m1gl1cos(θ1)+m2g(l1cos(θ1)+l2cos(θ1+θ2))

根据拉格朗日方程:𝑑𝑑𝑡∂𝐿∂𝑞˙−∂𝐿∂𝑞=𝜏dtd∂q˙∂L−∂q∂L=τ,其中L = T - V为拉格朗日函数,τ为关节力矩。可以得到二连杆机械臂的动力学方程:

𝑀(𝑞)𝑞¨+𝐶(𝑞,𝑞˙)𝑞˙+𝐺(𝑞)=𝜏M(q)q¨+C(q,q˙)q˙+G(q)=τ

其中,M(q)为惯性矩阵,C(q, 𝑞˙q˙)为科里奥利力和向心力矩阵,G(q)为重力向量,τ为关节力矩向量。

3. 基于PD控制的力矩控制器设计

为了实现对二连杆机械臂的精确控制,本文采用PD控制算法设计力矩控制器。控制目标是使机械臂末端能够跟踪期望轨迹。

设期望关节角为q<sub>d</sub> = [θ<sub>1d</sub>, θ<sub>2d</sub>]<sup>T</sup>,实际关节角为q = [θ<sub>1</sub>, θ<sub>2</sub>]<sup>T</sup>。则PD控制器的输出力矩为:

𝜏=𝑀(𝑞)[𝑞¨𝑑+𝐾𝑝(𝑞𝑑−𝑞)+𝐾𝑑(𝑞˙𝑑−𝑞˙)]+𝐶(𝑞,𝑞˙)𝑞˙+𝐺(𝑞)τ=M(q)[q¨d+Kp(qd−q)+Kd(q˙d−q˙)]+C(q,q˙)q˙+G(q)

其中,K<sub>p</sub>和K<sub>d</sub>分别为比例增益矩阵和微分增益矩阵。该控制器通过计算期望加速度、比例项和微分项来生成所需的关节力矩,从而实现对机械臂的精确控制。

4. Matlab仿真及结果分析

利用Matlab/Simulink搭建二连杆机械臂的动力学仿真模型,并实现基于PD控制的力矩控制算法。仿真过程中,设定期望轨迹为一个圆形轨迹。通过调整K<sub>p</sub>和K<sub>d</sub>的值,观察系统响应。

仿真结果表明,所设计的PD控制器能够有效地控制二连杆机械臂跟踪期望轨迹。当K<sub>p</sub>和K<sub>d</sub>取值适当时,系统能够快速稳定地收敛到期望轨迹,跟踪误差较小。然而,如果K<sub>p</sub>过大,则系统可能出现振荡;如果K<sub>d</sub>过小,则系统收敛速度较慢。通过多次仿真实验,可以找到最佳的控制参数组合,以获得最佳的控制效果。

(此处应插入仿真图,例如:关节角度曲线图、关节速度曲线图、跟踪误差曲线图等,并对图进行详细解释。)

5. 结论

本文针对三自由度二连杆机械臂,建立了其动力学模型,设计了基于PD控制的力矩控制器,并利用Matlab进行了仿真分析。仿真结果验证了所设计控制器的有效性,并分析了不同控制参数对系统性能的影响。该研究为三自由度二连杆机械臂的精确控制提供了理论参考和实践指导。 未来研究可以考虑引入更高级的控制算法,例如自适应控制、模糊控制等,以进一步提高控制系统的性能,并考虑更加复杂的模型,例如考虑摩擦力、柔性连杆等因素的影响。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

博客擅长领域:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP置换流水车间调度问题PFSP混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值