【图像处理】基于双目立体匹配的景深计算附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

 景深信息在计算机视觉、机器人导航、三维重建等领域扮演着至关重要的角色。传统的获取景深的方法如结构光、飞行时间相机等往往存在成本高、对环境要求高等问题。基于双目立体匹配的景深计算作为一种被动式、非接触的景深获取方法,具有成本较低、对环境适应性较强等优点,因此得到了广泛的应用和深入的研究。本文将详细探讨基于双目立体匹配的景深计算原理、核心算法以及面临的挑战与未来的发展方向。首先,我们将阐述双目立体视觉的基本原理,特别是视差与景深之间的关系。接着,我们将深入剖析立体匹配过程中的关键步骤,包括特征提取与匹配、立体匹配代价计算、代价聚合、视差优化与细化。同时,我们将讨论不同的立体匹配算法,如基于区域匹配、基于特征匹配和基于学习的匹配方法。最后,我们将总结基于双目立体匹配的景深计算所面临的挑战,并展望未来的研究方向,包括如何提高匹配精度和鲁棒性,如何处理弱纹理和遮挡区域,以及如何结合深度学习等技术进一步提升性能。

关键词: 双目立体视觉;立体匹配;景深计算;视差;图像处理;计算机视觉

引言

获取场景的景深信息是计算机视觉领域的一个核心问题。景深,即物体到观察者之间的距离,是理解三维空间结构、实现三维重建、进行机器人自主导航和环境感知的基础。传统的景深测量方法,如使用激光雷达、结构光投射器或飞行时间 (ToF) 相机,虽然可以提供高精度的景深信息,但通常设备昂贵、体积较大,且对环境光照或物体表面特性有一定要求。相比之下,基于双目立体视觉的景深计算作为一种被动式方法,仅依赖于两幅从不同视角拍摄的图像,具有成本较低、易于部署、对环境适应性相对较强等优势,因此在学术研究和工业应用中都得到了广泛关注。

双目立体视觉模仿人类双眼观察物体的方式,通过获取同一场景在两个不同位置拍摄的图像,然后利用三角测量原理计算物体到相机的距离。其核心在于找到左右两幅图像中对应像素点之间的关系,即立体匹配问题。一旦确定了对应点,就可以通过计算它们在水平方向上的位移差(即视差)来推导出景深信息。然而,立体匹配是一个具有挑战性的问题,尤其是在弱纹理区域、重复纹理区域以及存在遮挡的情况下,精确地找到对应点往往非常困难。本文旨在对基于双目立体匹配的景深计算进行系统的论述,深入探讨其原理、关键算法和面临的挑战。

一、双目立体视觉的基本原理

双目立体视觉系统通常由两个并排放置的相机组成,模拟人类双眼。这两个相机具有固定的相对位置和朝向。理想情况下,双目立体系统可以简化为平行光轴模型,即两个相机的光轴相互平行,并且它们的光心在同一条水平线上。尽管实际系统中存在畸变和相对位姿误差,但通过相机标定可以校正这些误差,使其接近理想模型。

    二、基于双目立体匹配的景深计算流程

    基于双目立体匹配的景深计算通常包括以下几个关键步骤:

    1. 相机标定与立体校正: 这是双目立体视觉系统的基础。相机标定旨在获取每个相机的内部参数(焦距、主点、畸变系数)以及两个相机之间的外部参数(相对旋转和位移)。立体校正则是利用标定结果对左右两幅图像进行畸变校正和重投影变换,使得两幅图像满足平行光轴模型,从而简化后续的立体匹配过程,将二维匹配问题转化为一维水平线上的搜索问题。

    2. 立体匹配: 这是整个流程中最核心、最具挑战性的步骤。其目标是找到左、右两幅图像中同一空间点的对应像素点。立体匹配算法的性能直接决定了最终景深计算的精度和鲁棒性。

    3. 视差计算与视差图生成: 一旦确定了对应点,就可以计算出每个像素点的视差。将所有像素点的视差值集合起来,就构成了视差图。视差图是一个与原始图像大小相同的灰度图像,其灰度值表示对应像素点的视差大小。

    4. 景深计算与景深图生成: 利用视差图以及相机标定得到的基线距离 BB 和焦距 ff,根据景深与视差的关系公式 Z=B⋅fdZ=dB⋅f,可以计算出每个像素点对应的景深值,从而生成景深图。

    三、立体匹配算法

    立体匹配算法是基于双目立体匹配景深计算的关键技术。根据匹配策略的不同,立体匹配算法可以分为以下几类:

    1. 基于区域的匹配算法 (Area-Based Matching, ABM): 这类算法通过比较左右图像中像素点周围的图像块(窗口)的相似性来寻找对应点。常用的相似性度量包括:

      基于区域的匹配算法简单直观,计算效率较高。但它们对图像块的大小选择比较敏感,容易受到光照变化、噪声和形变的影响,特别是在纹理重复或缺乏纹理的区域容易产生误匹配。此外,固定大小的匹配窗口难以兼顾不同深度的物体,导致在边缘区域出现“胖”的匹配结果。

      • 平方差之和 (Sum of Squared Differences, SSD):

         计算两个图像块对应像素值差的平方和。值越小,相似度越高。

      • 绝对差之和 (Sum of Absolute Differences, SAD):

         计算两个图像块对应像素值差的绝对值之和。值越小,相似度越高。

      • 归一化互相关 (Normalized Cross Correlation, NCC):

         计算两个图像块的归一化互相关系数。值越大,相似度越高。NCC 对光照变化具有一定的鲁棒性。

      • 零均值归一化互相关 (Zero-mean Normalized Cross Correlation, ZNCC):

         对图像块的像素值进行零均值处理后再计算NCC。进一步增强了对光照变化的鲁棒性。

    2. 基于特征的匹配算法 (Feature-Based Matching, FBM): 这类算法首先在左右图像中提取具有区分性的特征点(如 Harris 角点、SIFT 特征点、SURF 特征点等),然后在左右图像中对提取到的特征点进行匹配。常用的特征匹配方法包括特征描述子匹配和几何约束匹配。

      基于特征的匹配算法对光照、旋转和尺度变化具有较好的鲁棒性,尤其适用于稀疏匹配场景。然而,它们只能获取稀疏的视差信息,无法得到稠密的景深图。为了获得稠密的景深图,通常需要结合插值或其他技术。此外,特征提取和描述子计算也需要一定的计算量。

      • 特征描述子匹配:

         计算左右图像中特征点的描述子,然后通过计算描述子之间的相似度(如欧氏距离)来寻找最相似的对应点。

      • 几何约束匹配:

         利用双目系统的几何约束(如极线约束)来限制搜索范围,提高匹配效率和准确性。例如,对于左图像中的一个特征点,其对应点一定位于右图像中对应的极线上。

    3. 半全局匹配算法 (Semi-Global Matching, SGM): SGM 是一种介于基于区域和全局优化之间的算法。它首先计算每个像素点在不同视差下的匹配代价,然后通过在多个方向上进行一维路径聚合来优化代价,从而得到更平滑和准确的视差图。SGM 算法考虑了相邻像素之间的视差一致性约束,对误匹配具有一定的抑制作用,能够生成较为稠密的视差图,并且计算效率相对较高。SGM 在许多实际应用中取得了不错的效果,是目前常用的立体匹配算法之一。

    4. 全局优化算法 (Global Optimization): 这类算法将立体匹配问题建模为一个能量最小化问题,通过定义一个能量函数来衡量视差图的质量,然后利用优化算法(如图割、信念传播等)寻找使能量函数最小化的视差图。能量函数通常包含数据项(衡量每个像素点在特定视差下的匹配代价)和平滑项(约束相邻像素之间的视差变化,以保证视差图的平滑性)。全局优化算法理论上能够得到最优的视差图,但计算复杂度较高,尤其对于高分辨率图像。

    5. 基于学习的匹配算法 (Learning-Based Matching): 近年来,随着深度学习技术的发展,越来越多的研究将深度学习应用于立体匹配。基于学习的方法可以自动从大量数据中学习复杂的图像特征和匹配策略,有望克服传统算法在弱纹理、重复纹理和遮挡区域的困难。常见的基于学习的立体匹配方法包括:

      基于学习的算法在许多公开数据集上取得了最先进的性能,但它们通常需要大量的训练数据,并且模型的泛化能力可能会受到训练数据分布的影响。

      • 端到端学习:

         直接训练一个深度神经网络,输入左右图像,输出视差图。

      • 基于代价匹配学习:

         学习一个网络来计算像素点之间的匹配代价。

      • 基于视差回归学习:

         学习一个网络直接回归像素点的视差值。

    四、视差优化与细化

    立体匹配算法得到的原始视差图往往存在噪声、孔洞和不连续等问题。为了提高视差图的质量,通常需要进行视差优化和细化处理。常用的方法包括:

    1. 左右一致性检查 (Left-Right Consistency Check): 分别以左图像和右图像为参考进行立体匹配,得到两个视差图。然后检查两个视差图之间的差异。如果某个像素点在两个视差图中的视差值差别较大,则认为该点可能存在误匹配,需要进行处理(如标记为无效点或进行修补)。

    2. 中值滤波、双边滤波等后处理: 利用滤波方法对视差图进行平滑处理,以去除噪声。中值滤波对离群点不敏感,能够保留边缘信息;双边滤波则在平滑的同时保留边缘。

    3. 视差补全: 对于误匹配或无法匹配导致的视差孔洞,可以利用周围像素点的视差信息进行插值或基于图像内容的补全。

    4. 亚像素视差估计: 通过插值或其他方法将整数视差估计细化到亚像素级别,以提高景深计算的精度。

    五、面临的挑战

    尽管基于双目立体匹配的景深计算取得了显著进展,但仍面临一些挑战:

    1. 弱纹理和重复纹理区域:

       在这些区域,图像块相似度区分度低,容易发生误匹配。

    2. 遮挡:

       图像中的某些区域在其中一幅图像中可见而在另一幅图像中被遮挡,导致无法找到对应点。

    3. 光照和颜色变化:

       左右图像之间的光照或颜色差异会影响基于区域的匹配算法的性能。

    4. 图像噪声和相机畸变:

       这些因素都会对匹配精度产生影响。

    5. 计算效率:

       对于高分辨率图像和实时应用,如何在保证精度的前提下提高计算效率是一个重要问题。

    6. 动态场景:

       对于运动的场景,如果左右图像不是同时获取,会引入时间上的不同步,导致匹配困难。

    六、未来发展方向

    为了克服上述挑战,未来的研究可以从以下几个方面展开:

    1. 更鲁棒的特征描述和匹配方法:

       发展对光照、纹理变化和形变更鲁棒的特征提取和匹配算法。

    2. 更精细的代价计算和聚合方法:

       考虑更复杂的代价计算函数和更有效的代价聚合策略,以更好地处理弱纹理和遮挡区域。

    3. 结合深度学习:

       进一步探索深度学习在立体匹配中的应用,设计更有效的网络结构和训练方法,以提高匹配精度和鲁棒性。

    4. 多传感器融合:

       将双目视觉与其他传感器(如单目深度估计、惯性测量单元 IMU 等)进行融合,利用不同传感器的优势相互补充。

    5. 动态场景下的立体匹配:

       研究如何处理运动场景中的立体匹配问题,例如利用光流信息或事件相机等。

    6. 硬件加速和实时性:

       优化算法实现,利用 GPU 等硬件平台进行加速,实现实时或近实时的景深计算。

    7. 可解释性和理论分析:

       深入理解基于学习的立体匹配模型的内部工作机制,提高模型的可解释性,并进行更 rigorous 的理论分析。

    结论

    基于双目立体匹配的景深计算是一种重要的景深获取方法,具有成本低、易于部署等优点。通过对双目立体视觉的基本原理、立体匹配算法、视差优化与细化过程的详细阐述,我们可以看到该领域已经取得了显著进展。然而,在弱纹理、遮挡、动态场景等方面仍然面临挑战。未来的研究将继续探索更鲁棒、更精确、更高效的立体匹配算法,特别是结合深度学习等新技术,以满足计算机视觉、机器人和三维重建等领域对高精度景深信息的日益增长的需求。随着技术的不断发展,基于双目立体匹配的景深计算有望在更广泛的应用场景中发挥重要作用。

    ⛳️ 运行结果

    🔗 参考文献

    [1] 宋雯君.基于双目立体匹配算法的雾霾图像清晰化处理研究[D].云南师范大学[2025-05-01].

    [2] 鲜希.基于视差信息的3D视频后处理的评估与改进[D].中国科学技术大学[2025-05-01].DOI:10.7666/d.d141600.

    [3] 晏涛.立体图像和视频编辑的研究[D].中国科学技术大学,2013.DOI:10.7666/d.Y2441934.

    📣 部分代码

    🎈 部分理论引用网络文献,若有侵权联系博主删除

     👇 关注我领取海量matlab电子书和数学建模资料 

    🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

    🌈 各类智能优化算法改进及应用
    生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
    🌈 机器学习和深度学习时序、回归、分类、聚类和降维

    2.1 bp时序、回归预测和分类

    2.2 ENS声神经网络时序、回归预测和分类

    2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

    2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

    2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
    2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

    2.7 ELMAN递归神经网络时序、回归\预测和分类

    2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

    2.9 RBF径向基神经网络时序、回归预测和分类

    2.10 DBN深度置信网络时序、回归预测和分类
    2.11 FNN模糊神经网络时序、回归预测
    2.12 RF随机森林时序、回归预测和分类
    2.13 BLS宽度学习时序、回归预测和分类
    2.14 PNN脉冲神经网络分类
    2.15 模糊小波神经网络预测和分类
    2.16 时序、回归预测和分类
    2.17 时序、回归预测预测和分类
    2.18 XGBOOST集成学习时序、回归预测预测和分类
    2.19 Transform各类组合时序、回归预测预测和分类
    方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
    🌈图像处理方面
    图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
    🌈 路径规划方面
    旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
    🌈 无人机应用方面
    无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
    🌈 通信方面
    传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
    🌈 信号处理方面
    信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
    🌈电力系统方面
    微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
    🌈 元胞自动机方面
    交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
    🌈 雷达方面
    卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
    🌈 车间调度
    零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

    👇

    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值