【图像隐藏】基于离散余弦变换DCT域实现图像水印嵌入与提取附Matlab代码

✅作者简介:热爱数据处理、数学建模、仿真设计、论文复现、算法创新的Matlab仿真开发者。

🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室

🍊个人信条:格物致知,期刊达人。

🔥 内容介绍

图像隐藏技术作为信息安全领域的重要分支,近年来得到了广泛的研究和应用。其核心目标是将秘密信息(水印)嵌入到载体图像中,并在不影响载体图像质量的前提下,可靠地提取水印信息。本文将深入探讨基于离散余弦变换 (Discrete Cosine Transform, DCT) 域实现图像水印嵌入与提取的方法,分析其原理、优势以及存在的挑战。

DCT变换是一种常用的正交变换,因其良好的能量聚集特性而被广泛应用于图像压缩领域,如JPEG标准。在DCT域进行水印嵌入,可以有效地利用图像的频率特性,将水印信息隐藏在人类视觉系统(Human Visual System, HVS)不太敏感的高频成分中,从而提高水印的鲁棒性和不可见性。 与直接在空间域进行水印嵌入相比,DCT域方法对图像的几何变换、噪声干扰等具有更强的鲁棒性。

本文将从以下几个方面详细阐述基于DCT域的图像水印算法:

一、 DCT变换与图像的频率特性

DCT变换将图像从空间域转换到频率域,低频系数对应图像的整体信息和低频细节,高频系数对应图像的细节纹理和边缘信息。 HVS 对低频分量比较敏感,而对高频分量相对不敏感。因此,在高频系数中嵌入水印,可以最大限度地降低水印对图像视觉质量的影响。 典型的DCT变换公式如下:

X(k) = α(k) Σ_{n=0}^{N-1} x(n) cos[πk(2n+1)/2N]

其中,x(n) 表示空间域图像数据,X(k) 表示频率域DCT系数,α(k) 为归一化因子。 通过对图像进行分块DCT变换,可以将图像分解成多个8×8大小的DCT系数块,每个块包含低频和高频系数。

二、 水印嵌入策略

在DCT域嵌入水印的方法多种多样,主要区别在于水印信息如何修改DCT系数以及修改的强度如何控制。 常用的策略包括:

  • 直接修改法: 直接修改高频系数的值来嵌入水印信息。 例如,可以根据水印比特“0”或“1”,将对应的DCT系数增加或减少一个预设值。 这类方法简单易行,但鲁棒性较差,容易受到图像处理操作的影响。

  • 量化索引调制法 (Quantization Index Modulation, QIM): 将水印比特映射到不同的量化区间,然后根据水印比特选择合适的量化步长对DCT系数进行量化。 这种方法可以有效提高水棒性,并且能更好地控制水印的不可见性。

  • 扩频法: 将水印信号通过扩频序列进行扩频,然后将扩频后的信号嵌入到多个DCT系数中。 这种方法可以有效提高水印的鲁棒性和安全性,但计算复杂度相对较高。

在实际应用中,需要根据具体的应用场景和安全需求选择合适的嵌入策略。 例如,对于需要高鲁棒性的应用,可以选择QIM或扩频法;对于对计算复杂度要求较高的应用,可以选择直接修改法。

三、 水印提取策略

水印提取策略与嵌入策略密切相关。 在提取过程中,需要首先对载体图像进行DCT变换,然后根据嵌入策略从DCT系数中提取水印信息。 提取方法通常包括:

  • 反向操作: 如果采用直接修改法嵌入水印,则可以采用反向操作来提取水印信息。 例如,将DCT系数与预设值进行比较,根据比较结果判断水印比特。

  • 阈值判决: 如果采用QIM或扩频法嵌入水印,则需要根据量化区间或扩频序列进行阈值判决,判断水印比特。

水印提取的准确率与嵌入强度、噪声干扰、图像处理操作等因素密切相关。 设计合适的阈值判决策略,可以提高水印提取的准确率。

四、 鲁棒性和不可见性的权衡

在设计基于DCT域的图像水印算法时,需要平衡水印的鲁棒性和不可见性。 提高水印的鲁棒性通常需要增加嵌入强度,但这可能会降低水印的不可见性,甚至导致载体图像质量下降。 因此,需要找到一个合适的平衡点。 这可以通过优化嵌入策略、选择合适的量化参数、以及利用HVS特性来实现。

五、 总结与展望

基于DCT域的图像水印技术是一种有效的图像隐藏方法,其具有良好的鲁棒性和不可见性。 本文详细阐述了DCT变换、水印嵌入和提取策略,并分析了鲁棒性和不可见性的权衡问题。 未来研究可以关注以下几个方面:

  • 开发更鲁棒的嵌入算法,使其能够抵抗更复杂的攻击,例如几何变换、剪切、压缩等。

  • 研究更加高效的算法,降低计算复杂度,提高处理速度。

  • 探索新的水印嵌入位置选择策略,进一步提升水印的不可见性。

  • 结合深度学习技术,设计更智能的水印嵌入和提取算法。

总之,基于DCT域的图像水印技术在信息安全领域具有重要的应用前景,其不断发展和完善将为数字版权保护和信息安全提供更可靠的保障。 持续的研究和创新将推动该技术在各个领域的广泛应用。

⛳️ 运行结果

🔗 参考文献

[1] 李昊,吕建平,杨芳芳.基于正负量化的DCT域数字图像盲水印算法研究[J].计算机工程与应用, 2011, 47(5):3.DOI:10.3778/j.issn.1002-8331.2011.05.056.
[2] 欧阳琦,李炳法,林春蔷,等.基于DCT域的图像数字水印技术[J].信息技术, 2005, 29(9):4.DOI:10.3969/j.issn.1009-2552.2005.09.007.
[3] 李永全.基于MATLAB的DCT域数字水印技术实现[J].信息技术, 2005, 29(4):4.DOI:10.3969/j.issn.1009-2552.2005.04.022.

🎈 部分理论引用网络文献,若有侵权联系博主删除

博客擅长领域:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP置换流水车间调度问题PFSP混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

### 基于DCT的彩色图像数字水印嵌入提取 #### 彩色图像预处理 对于彩色图片,基本DCT算法的流程首先是将RGB图片转换成YUV格式[^1]。这种颜色空间转换有助于分离亮度(Y)和色度(U,V),使得可以在不影响视觉效果的情况下对亮度分量进行操作。 ```matlab % 将RGB图像转换为YCbCr色彩空间 [yuvImage, ~] = rgb2ycbcr(rgbImage); ``` #### 图像分割 随后,图像矩阵会被分成互不重叠的8×8像素的小块。这一过程是为了适应标准JPEG压缩中的宏块大小,同时也便于后续应用快速傅里叶变换或其他正交变换。 ```matlab blockSize = 8; blocks = mat2tiles(yComponentOfYuvImage, blockSize); % yComponentOfYuvImage代表Y通道的数据 ``` #### 应用离散余弦变换(DCT) 针对每一个8×8的小块执行二维离散余弦变换(DCT)。这一步骤能够有效地集中能量分布,从而允许在较低频率区嵌入水印而不显著影响图像质量。 ```matlab dctBlocks = cellfun(@dct2, blocks, 'UniformOutput', false); ``` #### 数字水印嵌入 按照特定规则调整某些选定DCT系数以携带水印信息[w=±1]。具体来说,可以改变AC系数(非直流成分),因为这些变化不易被人眼察觉。 ```matlab for i = 1:length(dctBlocks(:)) block = dctBlocks{i}; % 修改指定位置上的DCT系数 if watermarkBit(i) == 1 block(modifiedCoefficientIndex) = ... ceil((abs(block(modifiedCoefficientIndex)) + T)/T)*T; % 加强幅度 elseif watermarkBit(i) == -1 block(modifiedCoefficientIndex) = ... floor(abs(block(modifiedCoefficientIndex))/T)*T; % 减弱幅度 end dctBlocks{i} = block; end ``` 此处`watermarkBit`表示待嵌入的一位二进制水印比特序列;而`modifiedCoefficientIndex`则指定了要修改的具体DCT系数索引;`T`是一个预先设定好的阈值参数用于控制嵌入强度。 #### 反向变换恢复图像 完成上述所有步骤之后,则需依次施行反DCT、重组以及最终由YUV返回至RGB色彩模式的操作来获得含有隐形标记的新版本彩照。 ```matlab idctBlocks = cellfun(@idct2, dctBlocks, 'UniformOutput', false); reconstructedYChannel = cat(1, idctBlocks{:}); rgbWatermarkedImage = ycbcr2rgb(cat(3, reconstructedYChannel,... cbComponent,... crComponent)); ``` 以上即完成了整个基于DCT变换技术下的彩色影像内藏匿数位印记之全过程描述及其相应MATLAB代码片段展示。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值