【智能优化算法】海市蜃楼算法FATAmatlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,求助可私信。

🔥 内容介绍

近年来,随着人工智能领域的飞速发展,各种新型智能优化算法层出不穷。这些算法致力于解决复杂的优化问题,例如函数寻优、参数估计、调度安排等。本文将深入探讨一种新兴的智能优化算法——海市蜃楼算法(FATA,Fatamorgana Algorithm),分析其工作机制、优缺点以及应用前景。FATA算法巧妙地借鉴了自然界中令人着迷的海市蜃楼现象,将光线的折射和反射过程抽象成优化过程,为求解复杂优化问题提供了一种独特的视角。

海市蜃楼是一种光学现象,它是由光线在大气中不同密度层次间的折射和全反射形成的虚像。在特定的气象条件下,地表温度梯度较大,导致空气密度产生显著变化,光线在传播过程中发生弯曲,最终形成与真实景物相似的虚像,远处的物体仿佛漂浮在空中,或呈现出扭曲变形的样子。FATA算法正是从这种光线传播路径的弯曲变化中获得灵感,将搜索空间中的个体视为光线,通过模拟光线的折射和反射过程来引导算法的搜索方向,从而最终找到最优解。

FATA算法的核心思想在于构建一个基于光学原理的搜索模型。该模型将优化问题的搜索空间映射到一个“大气层”中,搜索空间中的每个点代表大气层中的一个点,其密度则对应于该点处的目标函数值。算法中的每个个体(光线)都具有初始位置和方向,通过模拟光线在不同密度层次间的折射和反射,更新个体的方向和位置。折射过程模拟了算法在搜索空间中探索新的区域,而反射过程则模拟了算法在遇到局部最优解时跳出局部区域的能力。

FATA算法的具体步骤可以概括如下:

  1. 初始化: 随机生成一定数量的个体(光线),每个个体由其位置和方向向量表示。

  2. 折射: 根据当前个体的位置和周围环境的“大气密度”(目标函数值),计算光线的折射角,并更新个体的位置和方向。折射角的计算可以采用基于梯度下降的方法,也可以采用其他更复杂的策略,例如结合混沌映射等技术增强算法的全局搜索能力。

  3. 反射: 当个体遇到“障碍物”(例如,目标函数值过高),则模拟光线的反射过程,改变个体方向,避免陷入局部最优。反射角度的计算可以根据一定的规则进行,例如随机生成一个新的方向向量,或者利用镜像反射原理。

  4. 更新: 根据个体的新位置和目标函数值,更新种群中个体的适应度值。

  5. 选择: 根据适应度值,选择适应度较高的个体,并淘汰适应度较低的个体,以保持种群的多样性。

  6. 终止条件: 当满足预设的终止条件(例如,迭代次数达到上限或目标函数值满足精度要求)时,算法终止,返回当前最优解。

与其他智能优化算法相比,FATA算法具有以下优点:

  • 全局搜索能力强: 通过模拟光线的折射和反射过程,FATA算法能够有效地避免陷入局部最优,提高算法的全局搜索能力。

  • 收敛速度快: 合理的折射和反射策略可以加快算法的收敛速度,提高求解效率。

  • 参数少: 与一些参数较多的智能优化算法相比,FATA算法的参数相对较少,易于调整和应用。

然而,FATA算法也存在一些不足:

  • 对目标函数的性质敏感: FATA算法的性能受到目标函数性质的影响,对于一些复杂的非凸函数,其性能可能不如其他算法。

  • 参数调整难度: 虽然参数较少,但参数的选取仍会影响算法的性能,需要根据具体问题进行调整。

未来,FATA算法的研究方向可以集中在以下几个方面:

  • 改进折射和反射策略: 研究更有效的折射和反射策略,提高算法的全局搜索能力和收敛速度。

  • 结合其他智能优化算法: 将FATA算法与其他智能优化算法结合,例如遗传算法、粒子群算法等,形成混合算法,进一步提高算法的性能。

  • 应用于实际问题: 将FATA算法应用于实际问题中,例如图像处理、路径规划、工程优化等,验证其有效性和实用性。

总而言之,海市蜃楼算法FATA是一种新颖的智能优化算法,它巧妙地借鉴了自然现象,为解决复杂优化问题提供了一种新的思路。尽管FATA算法还存在一些不足,但其具有良好的发展前景,随着未来研究的深入,相信FATA算法会在更多领域得到广泛应用,并为优化算法的发展贡献力量。 进一步的研究应该着重于提高算法的鲁棒性和适应性,使其能够更好地处理各种类型的优化问题。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制

擅长领域:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值