【多智能体】自适应动态规划理论,结合BP神经网络,设计实现多智能体系统的一致控制Matlab实现

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,求助可私信。

🔥 内容介绍

摘要: 多智能体系统的一致性控制是当前研究热点,其目标是设计控制策略,使系统中所有智能体最终达到状态一致。本文提出一种基于自适应动态规划 (ADP) 和反向传播 (BP) 神经网络的多智能体系统一致性控制方法。该方法利用ADP在线学习最优控制策略,并利用BP神经网络逼近最优控制策略的价值函数和策略函数,有效解决了传统ADP方法计算复杂度高、难以应用于高维系统的问题。通过理论分析和仿真实验,验证了该方法的有效性和优越性。

关键词: 多智能体系统;一致性控制;自适应动态规划;BP神经网络;在线学习

1. 引言

多智能体系统 (MAS) 由多个具有独立行为能力的智能体组成,它们通过相互作用实现共同目标。一致性控制作为MAS研究中的一个重要分支,旨在设计控制算法,使得系统中所有智能体的状态最终收敛到相同的值或满足某种预定义的几何关系。近年来,一致性控制在机器人编队、传感器网络、电力系统等领域得到了广泛的应用。

传统的基于模型的一致性控制方法需要精确了解系统的动力学模型,然而在实际应用中,系统模型往往难以精确获取或存在不确定性。因此,发展能够处理模型不确定性的自适应控制方法至关重要。自适应动态规划 (ADP) 作为一种强大的在线学习方法,能够在无需精确模型信息的情况下学习最优控制策略,成为解决此类问题的有效途径。

然而,标准ADP方法通常需要求解高维的Hamilton-Jacobi-Bellman (HJB) 方程,计算复杂度很高,难以应用于高维系统。为了克服这一难题,本文结合BP神经网络,提出一种基于ADP和BP神经网络的多智能体系统一致性控制方法。BP神经网络具有强大的非线性逼近能力,能够有效逼近ADP算法中需要求解的价值函数和策略函数,降低计算复杂度,提高算法的实时性。

2. 系统模型与问题描述

考虑一个由N个智能体组成的多智能体系统,每个智能体的动力学模型可以用如下状态方程描述:

ẋᵢ = fᵢ(xᵢ, uᵢ) + gᵢ(xᵢ, uᵢ)wᵢ, i = 1, 2, ..., N (1)

其中,xᵢ ∈ Rⁿ 表示智能体i的状态向量;uᵢ ∈ Rᵐ 表示智能体i的控制输入;wᵢ ∈ Rᵖ 表示外部干扰;fᵢ(·) 和 gᵢ(·) 为已知的或未知的连续函数。

系统的一致性控制目标是设计一组控制输入 {u₁, u₂, ..., uₙ},使得所有智能体的状态最终收敛到一致状态,即:

lim┬(t→∞) ||xᵢ(t) - xⱼ(t)|| = 0, ∀i, j ∈ {1, 2, ..., N} (2)

其中 ||·|| 表示向量范数。

3. 基于ADP和BP神经网络的一致性控制方法

本文采用基于Critic-Actor结构的ADP算法。Critic网络用于逼近价值函数,Actor网络用于逼近最优控制策略。

3.1 Critic网络的设计:

Critic网络采用BP神经网络,其输入为智能体i的状态向量xᵢ和控制输入uᵢ,输出为价值函数Vᵢ(xᵢ, uᵢ)的估计值V̂ᵢ(xᵢ, uᵢ)。Critic网络的学习目标是最小化如下代价函数:

Jᵢ = ∫₀^∞ [rᵢ(xᵢ, uᵢ) + λV̂ᵢ(xᵢ, uᵢ)]dt (3)

其中,rᵢ(xᵢ, uᵢ) 为代价函数,λ为折扣因子。通过Bellman方程,可以得到Critic网络的更新规则,利用TD(λ)算法或其他强化学习算法进行在线更新。

3.2 Actor网络的设计:

Actor网络同样采用BP神经网络,其输入为智能体i的状态向量xᵢ,输出为控制输入uᵢ的估计值ûᵢ(xᵢ)。Actor网络的学习目标是根据Critic网络提供的价值函数梯度信息,调整策略函数以最小化价值函数。Actor网络的更新规则可以根据策略梯度算法进行推导。

3.3 一致性约束的引入:

为了实现系统的一致性,需要在代价函数rᵢ(xᵢ, uᵢ)中引入一致性约束项。例如,可以采用如下形式的代价函数:

rᵢ(xᵢ, uᵢ) = ½||xᵢ - x̄||² + ½||uᵢ||² (4)

其中,x̄ = (1/N)∑ᵢ₌₁ᴺ xᵢ 表示所有智能体的平均状态。第一项惩罚状态偏差,第二项惩罚控制输入的幅度。

3.4 算法步骤:

  1. 初始化Critic网络和Actor网络的权重。

  2. 采集智能体状态和控制输入数据。

  3. 利用Critic网络估计价值函数,并根据Bellman方程更新Critic网络权重。

  4. 利用Actor网络估计控制输入,并根据策略梯度算法更新Actor网络权重。

  5. 重复步骤2-4,直到满足一致性条件或达到预设的迭代次数。

4. 仿真实验与结果分析

本文对提出的方法进行了仿真实验,验证了其有效性。仿真结果表明,基于ADP和BP神经网络的多智能体一致性控制方法能够有效地使所有智能体达到状态一致,并且对模型不确定性和外部干扰具有较强的鲁棒性。与传统的基于模型的方法相比,该方法具有更高的适应性和更强的实用性。

5. 结论

本文提出了一种基于自适应动态规划和BP神经网络的多智能体系统一致性控制方法。该方法有效地解决了传统ADP方法计算复杂度高的问题,并能够处理系统模型的不确定性。仿真结果验证了该方法的有效性和优越性。未来的研究方向包括:进一步提高算法的收敛速度和鲁棒性;研究更复杂的系统模型和更有效的学习算法;将该方法应用于实际的工程应用中。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制

🌿 往期回顾可以关注主页,点击搜索

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值