✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
悬索桥作为现代交通基础设施的重要组成部分,其安全性和可靠性至关重要。车辆荷载是影响悬索桥结构安全的关键因素之一。传统的车辆荷载识别方法通常依赖于昂贵的传感器和复杂的安装维护,难以实现大范围、实时监测。本文探讨了利用悬索桥自身的车辆振动响应,通过先进的信号处理和机器学习算法,实现车辆质量、速度和到达时间的自动识别。该研究具有重要的理论意义和实际应用价值,能够为桥梁健康监测、交通流量管理和智能交通系统提供有力支持。
关键词:悬索桥,车辆振动,车辆识别,质量估计,速度估计,到达时间,信号处理,机器学习
1. 引言
随着经济的快速发展和交通需求的不断增长,悬索桥在全球范围内得到了广泛应用。悬索桥以其跨越能力强、结构轻巧等特点,成为连接地理障碍、促进区域经济发展的关键交通枢纽。然而,悬索桥长期承受着不断变化的车辆荷载,这些荷载会对桥梁结构产生显著影响,甚至可能导致结构损伤。因此,准确、及时地识别车辆荷载信息对于桥梁安全评估、疲劳分析和维护管理至关重要。
传统的车辆荷载识别方法,例如使用称重设备(如称重传感器和板式称重仪)和视觉监测系统(如摄像头和激光雷达),存在诸多局限性。称重设备安装和维护成本高昂,且易受环境因素影响,数据精度难以保证。视觉监测系统虽然能够提供车辆图像信息,但受光照、天气等条件影响较大,且难以直接获取车辆质量信息。此外,这些方法通常需要人工干预,难以实现全天候、自动化的监测。
近年来,利用桥梁振动响应进行车辆识别的研究逐渐兴起。这种方法利用车辆通过桥梁时产生的振动信号,通过信号处理和机器学习等技术,提取与车辆质量、速度和到达时间相关的信息。与传统方法相比,基于桥梁振动的车辆识别具有非侵入性、成本效益高、易于实现自动化等优势。
本文综述了基于悬索桥车辆振动的车辆质量、速度和到达时间自动识别研究的最新进展。首先,介绍了车辆-桥梁耦合动力学模型和振动信号特性。其次,分析了车辆识别的信号处理方法和机器学习算法。最后,讨论了该领域面临的挑战和未来的发展趋势。
2. 车辆-桥梁耦合动力学模型与振动信号特性
要实现基于悬索桥振动的车辆识别,需要深入理解车辆与桥梁之间的相互作用,建立准确的车辆-桥梁耦合动力学模型。该模型能够模拟车辆通过桥梁时,车辆荷载对桥梁结构产生的影响,以及桥梁振动对车辆运动的反作用。
常见的车辆-桥梁耦合动力学模型包括:
- 简化的车辆模型:
将车辆简化为单自由度或多自由度系统,例如弹簧-质量-阻尼系统,用于模拟车辆的垂直振动。
- 桥梁有限元模型:
利用有限元方法将桥梁结构离散化为多个单元,建立桥梁的动力学方程,能够精确模拟桥梁的复杂振动模态。
- 车辆-桥梁耦合方程:
通过考虑车辆荷载与桥梁位移、速度和加速度之间的关系,建立车辆和桥梁的耦合动力学方程,用于描述车辆和桥梁之间的相互作用。
通过求解车辆-桥梁耦合动力学模型,可以获得桥梁在车辆荷载作用下的振动响应。这些振动响应通常表现为复杂的时域信号,包含了丰富的车辆信息。车辆质量、速度和到达时间等因素都会影响桥梁振动的幅值、频率和相位。
例如,车辆质量越大,桥梁的整体振动幅值通常会增大;车辆速度越快,桥梁振动的频率成分可能会发生改变;车辆到达时间则直接影响桥梁振动响应的时域特性。因此,通过分析桥梁振动信号,可以反演出车辆的质量、速度和到达时间信息。
3. 基于悬索桥车辆振动的车辆识别方法
基于悬索桥车辆振动的车辆识别方法主要包括信号处理和机器学习两个方面。
3.1 信号处理方法
信号处理方法旨在从桥梁振动信号中提取与车辆信息相关的特征。常用的信号处理方法包括:
- 时频分析:
时频分析方法,例如短时傅里叶变换(STFT)和小波变换(WT),能够同时提供信号的时域和频域信息,有助于识别车辆通过桥梁时振动信号的动态变化。
- 模态分析:
模态分析方法可以识别桥梁的固有频率、振型和阻尼比等模态参数。车辆荷载会引起桥梁模态参数的变化,通过监测这些变化可以推断车辆信息。
- 独立成分分析(ICA):
ICA是一种盲源分离技术,可以从混合信号中分离出独立的成分。在车辆识别中,可以将桥梁振动信号视为多个独立信号的混合,例如车辆荷载引起的信号和环境噪声引起的信号,通过ICA可以分离出与车辆相关的信号。
- 经验模态分解(EMD)及其改进算法:
EMD是一种自适应的时频分析方法,可以将信号分解为一系列本征模态函数(IMF)。这些IMF包含了信号的不同频率成分,可以用于提取车辆相关的特征。针对EMD的端点效应和模态混叠问题,也发展了许多改进算法,例如集合经验模态分解(EEMD)和互补集合经验模态分解(CEEMDAN)。
3.2 机器学习算法
机器学习算法用于建立振动信号特征与车辆质量、速度和到达时间之间的关系模型。常用的机器学习算法包括:
- 回归模型:
回归模型,例如线性回归、支持向量回归(SVR)和高斯过程回归(GPR),可以建立振动信号特征与车辆质量、速度和到达时间之间的定量关系,实现车辆参数的估计。
- 分类模型:
分类模型,例如支持向量机(SVM)和决策树(DT),可以将车辆划分为不同的类别,例如轻型车、重型车等,实现车辆类型的识别。
- 神经网络(NN)及其变体:
神经网络具有强大的非线性拟合能力,可以学习复杂的振动信号特征与车辆信息之间的关系。常用的神经网络包括多层感知机(MLP)、卷积神经网络(CNN)和循环神经网络(RNN)。深度学习的兴起,使得神经网络在车辆识别领域取得了显著进展。
- 集成学习算法:
集成学习算法,例如随机森林(RF)和梯度提升决策树(GBDT),通过组合多个弱学习器,提高模型的泛化能力和鲁棒性。
4. 研究进展与案例分析
近年来,基于悬索桥车辆振动的车辆识别研究取得了显著进展。研究人员利用各种信号处理方法和机器学习算法,在实验室模型和实际桥梁上进行了大量的实验验证。
例如,有研究人员利用时频分析方法提取桥梁振动信号的瞬时频率和幅值,然后利用支持向量回归(SVR)模型估计车辆质量和速度。也有研究人员利用小波变换提取桥梁振动信号的特征,然后利用神经网络(NN)模型识别车辆类型。此外,还有研究人员利用经验模态分解(EMD)及其改进算法,结合支持向量机(SVM)或神经网络(NN)模型,实现了车辆到达时间的精确估计。
在实际桥梁的应用方面,一些研究人员在悬索桥上安装传感器,采集桥梁振动数据,然后利用上述方法进行车辆识别,取得了良好的效果。这些研究表明,基于悬索桥车辆振动的车辆识别方法具有良好的可行性和应用前景。
5. 面临的挑战与未来发展趋势
尽管基于悬索桥车辆振动的车辆识别研究取得了显著进展,但仍面临诸多挑战:
- 环境噪声的影响:
桥梁振动信号容易受到环境噪声的影响,例如风荷载、交通噪声和地震等。如何有效地去除噪声,提高信号的信噪比,是车辆识别的关键。
- 多车辆荷载的识别:
实际桥梁上通常存在多辆车同时通行的情况,多车辆荷载会使桥梁振动信号更加复杂,难以提取有效的特征。
- 车辆模型的简化:
车辆模型的简化程度会影响车辆识别的精度。如何建立更加精细的车辆模型,同时保证计算效率,是一个重要的研究方向。
- 桥梁结构的复杂性:
悬索桥的结构非常复杂,不同位置的振动响应差异较大。如何选择合适的传感器位置,以及如何利用多传感器数据进行融合,提高车辆识别的精度和鲁棒性,是一个重要的挑战。
未来,基于悬索桥车辆振动的车辆识别研究将朝着以下方向发展:
- 更先进的信号处理方法:
发展更先进的信号处理方法,例如深度学习的时频分析方法和自适应滤波方法,能够更有效地提取振动信号的特征,抑制噪声干扰。
- 更智能的机器学习算法:
发展更智能的机器学习算法,例如深度学习的集成学习算法和强化学习算法,能够更精确地建立振动信号特征与车辆信息之间的关系,提高车辆识别的精度和鲁棒性。
- 多传感器数据融合:
利用多传感器数据融合技术,将桥梁不同位置的振动响应信息进行整合,能够更全面地反映车辆荷载对桥梁结构的影响,提高车辆识别的精度和可靠性。
- 实时监测与预警系统:
将车辆识别结果应用于桥梁健康监测和交通流量管理,建立实时监测与预警系统,能够及时发现桥梁安全隐患,优化交通流量,保障桥梁的安全运行。
6. 结论
基于悬索桥车辆振动的车辆质量、速度和到达时间自动识别研究具有重要的理论意义和实际应用价值。该研究能够为桥梁健康监测、交通流量管理和智能交通系统提供有力支持。通过信号处理和机器学习等技术,可以从桥梁振动信号中提取车辆信息,实现车辆参数的估计和车辆类型的识别。尽管该领域仍面临诸多挑战,但随着技术的不断发展,基于悬索桥车辆振动的车辆识别方法将在桥梁工程领域发挥越来越重要的作用。通过持续的研究和创新,相信该技术能够为桥梁的安全运营和智能管理做出更大的贡献。
⛳️ 运行结果
🔗 参考文献
[1] 周师师.基于振动信号解析的沥青路面健康状况预检技术研究[D].同济大学,2022.
[2] 刘开颖.公路桥梁与车辆耦合振动研究现状与发展趋势[J].中文科技期刊数据库(文摘版)工程技术:00282-00282[2025-04-06].
[3] 陆亚平.基于MATLAB的车辆轮轨力数值研究[D].湘潭大学[2025-04-06].DOI:CNKI:CDMD:2.1017.874558.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇