✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
可见光和红外图像融合作为一种有效的多模态图像增强技术,旨在整合不同传感模态的互补信息,生成一幅信息更丰富、更具辨识度的合成图像。传统的图像融合方法在处理细节丰富度和热辐射信息的同时,往往面临信息冗余、伪影产生或重要特征丢失的问题。本文深入探讨了一种基于显著性检测的两尺度图像融合方法,该方法通过利用图像显著性信息对图像进行多尺度分解与融合,以期在保留图像关键特征的同时,有效抑制噪声并提升融合图像的质量。本文将详细阐述该方法的原理、实现步骤、潜在优势以及未来发展方向,以期为可见光和红外图像融合领域的研究提供新的视角和思路。
1. 引言
在现代信息获取与处理中,不同传感器的应用提供了多维度的数据来源。可见光图像以其高分辨率、丰富的纹理细节和色彩信息而著称,能够反映物体的形状、颜色和纹理等表面特征。然而,其成像容易受到光照条件的影响,在弱光、阴影或雾霾等恶劣环境下性能下降。与之相对,红外图像则能够捕捉物体自身或环境发出的热辐射信息,不受光照条件限制,可以有效揭示物体的热分布和隐藏目标,在夜视、安防、医疗等领域具有重要应用。然而,红外图像通常分辨率较低,纹理信息不丰富,难以提供精细的场景描述。
为了克服单一传感器图像的局限性,图像融合技术应运而生。图像融合的目标是将来自不同源图像的有用信息整合到一幅新的图像中,从而提高信息的完整性和可靠性。可见光和红外图像融合作为多光谱图像融合的重要分支,已成为图像处理领域的研究热点。成功的可见光和红外图像融合不仅能够保留可见光图像的丰富细节和纹理,同时也能融入红外图像的热信息,从而生成一幅既包含场景细节又突出热目标的融合图像,为目标检测、识别、跟踪以及场景理解等任务提供更全面的信息支撑。
传统的可见光和红外图像融合方法大致可分为像素级融合、特征级融合和决策级融合。像素级融合直接对源图像的像素值进行加权平均或选取,方法简单易实现,但容易产生伪影和对比度下降。特征级融合则提取源图像的特征(如边缘、纹理等)进行融合,再将融合后的特征反变换回图像空间,能够更好地保留重要信息,但特征提取和融合过程复杂且对特征选择敏感。决策级融合是在对源图像进行独立分析和决策后,再将决策结果进行融合,通常应用于高层视觉任务。
近年来,基于多尺度分解的图像融合方法受到了广泛关注。这类方法将源图像分解到不同的尺度层,对不同尺度层的分解系数进行融合,最后对融合后的系数进行重构得到融合图像。常见的多尺度分解方法包括金字塔分解、小波变换、Contourlet变换等。这些方法在一定程度上能够分离图像的细节信息和低频信息,并进行有针对性的融合。然而,如何有效融合不同尺度层的分解系数仍然是一个挑战。简单的加权平均或取大往往会引入噪声或丢失重要特征。
本文提出了一种基于显著性检测的两尺度图像融合方法,旨在利用图像的显著性信息指导多尺度融合过程。显著性区域通常代表图像中视觉上最引人注目的区域,这些区域往往包含重要的场景信息或目标信息。通过将显著性信息引入到多尺度融合过程中,可以更好地突出源图像中的关键特征,抑制非重要区域的噪声和干扰,从而提高融合图像的质量和视觉效果。
2. 基于显著性检测的两尺度图像融合方法
本文提出的两尺度图像融合方法主要包括以下几个步骤:源图像分解、显著性图生成、显著性引导的融合规则设计以及融合图像重构。
2.1 源图像分解
本文采用简单的两尺度分解策略,将源图像分解为基础层和细节层。基础层反映图像的低频信息和主要结构,可以通过高斯滤波或均值滤波等低通滤波器获得。细节层则包含图像的高频信息、边缘和纹理等细节,可以通过源图像减去其基础层得到。
2.2 显著性图生成
显著性图能够突出图像中对人眼视觉系统更具吸引力的区域。在可见光和红外图像融合中,显著性区域可能包含重要的目标、明显的纹理或热辐射异常区域。利用显著性信息可以更好地指导融合过程,将重要的信息更多地融入到融合图像中。
对于可见光图像,可以采用基于对比度、基于频率或基于学习的显著性检测方法。考虑到红外图像通常缺乏丰富的纹理和色彩信息,其显著性可能更多地体现在温度的异常变化上。因此,对于红外图像的显著性检测,可以考虑基于局部对比度或基于灰度梯度的显著性方法。
本文考虑采用简单的基于局部对比度的显著性检测方法。对于可见光图像,可以计算每个像素与其周围邻域像素的对比度,对比度越高,显著性越强。对于红外图像,可以考虑计算每个像素与其周围邻域像素的灰度差,灰度差越大,代表温度变化越明显,显著性越强。
设可见光显著性图为SVSV,红外显著性图为SISI。具体的显著性计算方法可以根据实际需求和图像特点进行选择。例如,可以采用中心-周边差分法或基于谱残差法的显著性检测算法。
2.3 显著性引导的融合规则设计
融合规则的设计是图像融合的关键步骤,它决定了如何将分解后的系数进行融合以生成融合图像的对应层。本文利用显著性信息来指导基础层和细节层的融合。
基础层融合:基础层主要包含图像的低频信息和主要结构。在可见光和红外图像中,基础层可能反映场景的光照、背景和主要物体的整体形状。对于基础层的融合,可以采用加权平均的方法,权重可以根据源图像的整体亮度、对比度或显著性信息来确定。考虑到红外图像在突出热目标方面的优势,可以考虑根据红外图像的显著性来调整基础层的融合权重,使红外图像的基础层在热目标区域贡献更多。
细节层融合:细节层包含图像的高频信息,如边缘、纹理和噪声。细节层的融合对保留源图像的细节信息至关重要。简单地对细节层进行平均可能会导致细节模糊,而简单地取大会放大噪声。利用显著性信息可以更好地指导细节层的融合,突出显著性区域的细节,抑制非显著性区域的噪声。
可以采用基于显著性幅度的融合规则。对于每个像素点,选择显著性更高的源图像的细节层系数。
DF(x,y)={DV(x,y)if SV(x,y)≥SI(x,y)DI(x,y)if SV(x,y)<SI(x,y)
更进一步,可以考虑采用基于显著性的加权平均或取大与加权平均相结合的策略。例如,在显著性较高的区域采用取大策略以保留更丰富的细节,在显著性较低的区域采用加权平均策略以抑制噪声。
2.4 融合图像重构
融合图像的重构是将融合后的基础层和细节层组合起来得到最终的融合图像。
IF=BF+DF
通过这种两尺度分解与显著性引导的融合策略,我们期望能够有效地整合可见光和红外图像的互补信息。基础层的融合保留了场景的主要结构和热目标的整体信息,而细节层的融合则在显著性区域突出了纹理、边缘和热辐射细节,从而生成一幅既清晰又具有热信息突出性的融合图像。
3. 方法的优势与挑战
本文提出的基于显著性检测的两尺度图像融合方法具有以下潜在优势:
- 突出关键信息:
利用显著性信息指导融合过程,能够更好地突出源图像中的重要区域和目标,提高融合图像的信息显著性。
- 抑制噪声:
在细节层融合中,通过显著性引导,可以更好地抑制非显著性区域的噪声,提高融合图像的视觉质量。
- 保留细节信息:
在显著性区域对细节层进行针对性融合,有助于保留源图像的丰富细节和纹理信息。
- 结构简单:
两尺度分解方法结构简单,易于实现。
然而,该方法也面临一些挑战:
- 显著性检测的准确性:
显著性图的质量直接影响融合效果。不同场景和图像内容下的显著性检测方法性能差异较大,如何选择或设计鲁棒的显著性检测算法是一个挑战。
- 显著性图的融合方式:
如何更有效地利用可见光和红外图像的显著性信息来指导融合过程,仍有待深入研究。简单地基于显著性大小进行决策可能忽略一些重要信息。
- 尺度分解方法的选择:
虽然两尺度分解简单有效,但更精细的多尺度分解方法(如小波、Contourlet等)可能能更好地分离图像的不同频率成分,如何与显著性信息有效结合需要进一步探索。
- 融合规则的优化:
基础层和细节层的融合规则还有改进空间,可以考虑更复杂的融合策略,例如基于局部能量、梯度信息或学习的融合规则。
4. 实验与结果分析(此处为论文的实验部分,在此处进行原理性阐述,实际论文中需要包含具体的实验设置、数据集、评价指标和结果展示与分析)
为了验证本文方法的有效性,需要进行大量的实验。实验应该采用标准的可见光和红外图像数据集,例如TNO数据集等。同时,为了全面评估融合效果,需要采用客观评价指标和主观评价相结合的方式。
常用的客观评价指标包括:
- 信息熵 (Entropy):
衡量图像的信息丰富度。
- 互信息 (Mutual Information):
衡量融合图像与源图像之间的信息关联性。
- 峰值信噪比 (Peak Signal-to-Noise Ratio, PSNR) 和结构相似性指数 (Structural Similarity Index, SSIM):
通常用于评估融合图像与参考图像(如果存在)的相似性,但在可见光和红外图像融合中,通常没有完美的参考图像。
- 感知哈希 (Perceptual Hash):
衡量图像的相似度。
- 基于梯度的评价指标:
评估融合图像的边缘和细节保留能力。
- 基于显著性的评价指标:
评估融合图像对显著性信息的突出程度。
主观评价通常通过人眼观察来评估融合图像的视觉效果,包括清晰度、对比度、细节保留程度、伪影情况以及热目标的突出程度。
在实验中,可以将本文方法与一些经典的可见光和红外图像融合方法进行对比,例如基于小波变换、基于PCA、基于IFCNN等方法。通过对比不同方法在不同数据集上的表现,可以评估本文方法的优势和局限性。
预期结果是,基于显著性检测的两尺度融合方法能够在客观评价指标和主观视觉效果上优于一些传统方法,尤其在突出显著性区域的热信息和细节信息方面表现更好。
5. 结论与未来工作展望
本文提出了一种基于显著性检测的可见光和红外图像的两尺度图像融合方法。该方法通过将源图像分解为基础层和细节层,并利用显著性信息指导两层的融合,旨在整合可见光图像的细节信息和红外图像的热信息,生成高质量的融合图像。该方法简单有效,能够有效突出图像的关键特征,抑制噪声。
未来的工作可以从以下几个方面进行深入研究:
- 更鲁棒的显著性检测方法:
针对可见光和红外图像的特点,设计更鲁棒和准确的显著性检测算法,以提高显著性图的质量。
- 多模态显著性融合:
研究如何更有效地融合可见光和红外图像的显著性信息,生成更全面的联合显著性图来指导融合过程。
- 更精细的多尺度分解与融合:
探索更先进的多尺度分解方法,并设计更复杂的显著性引导的融合规则,以更好地处理图像的不同频率成分。
- 基于深度学习的显著性引导融合:
利用深度学习技术端到端地学习显著性信息和融合规则,以进一步提升融合效果。
- 应用导向的融合评价:
除了传统的图像质量评价,还可以结合具体的应用任务(如目标检测、跟踪等)来评估融合图像的实际效果。
- 实时性考虑:
在实际应用中,融合算法的实时性也很重要,未来的研究可以考虑设计计算效率更高的显著性检测和融合算法。
⛳️ 运行结果
🔗 参考文献
[1] 许磊,崔光茫,郑晨浦,等.基于多尺度分解和显著性区域提取的可见光红外图像融合方法[J].激光与光电子学进展, 2017, 54(11):10.DOI:10.3788/LOP54.111003.
[2] 陈思静,付志涛,李梓谦,等.基于自适应增强与显著性检测的可见光与红外图像融合算法[J].红外技术, 2023, 45(9):907-914.
[3] 冯鑫,方超,龚海峰,等.二尺度分解和显著性提取的红外与可见光图像融合[J].光谱学与光谱分析, 2023, 43(2):590-596.DOI:10.3964/j.issn.1000-0593(2023)02-0590-07.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇