【故障诊断】【连续小波变换】基于连续小波变换的轴承故障诊断研究[凯斯西储大学轴承数据集、西储大学数据]附Python代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

轴承作为旋转机械中至关重要的支撑部件,其运行状态直接关系到整个设备的稳定性和安全性。轴承的故障不仅会导致机器性能下降、能源消耗增加,更可能引发严重的事故,造成巨大的经济损失和人员伤亡。因此,开展对轴承故障的准确、高效诊断研究,对于保障工业生产安全、提升设备可靠性具有极为重要的现实意义。

传统的轴承故障诊断方法主要依赖于人工经验和简单的信号处理技术,如时域分析和频域分析。时域分析关注信号的瞬时特性,如均值、方差、峰值等;频域分析则通过傅里叶变换将信号分解为不同频率成分,关注信号的频率分布。然而,轴承故障信号往往是复杂的非平稳信号,其特征在时域和频域上都难以完全捕捉。例如,早期故障可能表现为微弱的冲击信号,在时域上不易察觉,在频域上则可能淹没在背景噪声中。同时,轴承故障的发生发展是一个动态过程,其特征随时间变化而变化,传统的频域分析无法提供信号在不同时刻的频率信息。

近年来,随着信号处理技术的飞速发展,时频分析方法在机械故障诊断领域得到了广泛应用。时频分析方法能够同时提供信号在时间和频率上的信息,有效解决了传统时域和频域分析方法的局限性。常见时频分析方法包括短时傅里叶变换(STFT)、小波变换(WT)、经验模态分解(EMD)等。其中,小波变换作为一种强大的时频分析工具,因其优越的局部化特性和多分辨率分析能力,在非平稳信号处理中展现出独特的优势。

本文将聚焦于基于连续小波变换(Continuous Wavelet Transform, CWT)的轴承故障诊断研究。连续小波变换通过在时间和尺度(与频率相关)上连续地平移和伸缩小波母函数,将信号分解到不同的时频尺度上,从而揭示信号在不同时间和频率下的局部特征。相较于离散小波变换,连续小波变换具有更精细的时频分辨率,能够更细腻地捕捉故障信号的瞬时变化和频率成分。本文将以凯斯西储大学(Case Western Reserve University, CWRU)的公开轴承数据集为研究对象,深入探讨连续小波变换在轴承故障诊断中的应用潜力,并对诊断效果进行实证分析。

第二章 轴承故障机理与信号特征

2.1 轴承常见故障类型

轴承的常见故障主要包括:

  • 内圈故障:

     由于内圈滚道疲劳剥落、磨损或裂纹等原因引起。

  • 外圈故障:

     由于外圈滚道疲劳剥落、磨损或裂纹等原因引起。

  • 滚动体故障:

     由于滚动体(球或滚子)疲劳剥落、磨损或裂纹等原因引起。

  • 保持架故障:

     由于保持架断裂、磨损或变形等原因引起。

不同类型的故障在轴承运转过程中会产生不同的激振力,从而导致其振动信号具有独特的特征。

2.2 故障信号的产生与传播

当轴承发生故障时,故障点与对偶件(如滚道与滚动体)之间的相互作用会产生周期性的冲击。这些冲击激发起轴承及其支撑结构的共振,从而产生振动信号。故障产生的振动信号会沿着传动路径传播,并通过安装在轴承座或其他相关位置的传感器进行采集。采集到的信号包含了丰富的轴承运行状态信息,通过对这些信号进行分析,可以推断出轴承是否存在故障以及故障类型。

2.3 故障信号的时域与频域特征

在时域上,早期故障信号可能表现为周期性的冲击成分,随着故障的加剧,冲击的幅值会增大,波形也可能发生变化。在频域上,轴承故障会产生一系列与故障频率相关的特征频率,如内圈通过频率、外圈通过频率、滚动体自转频率等。这些特征频率及其谐波是故障诊断的重要依据。然而,实际采集到的信号往往受到噪声干扰和设备自身振动的影响,使得故障特征频率在频谱图中并不总是清晰可见。

第三章 连续小波变换原理

3.1 小波变换的基本概念

3.2 连续小波变换

3.3 小波母函数的选择

小波母函数的选择对连续小波变换的分析结果有重要影响。不同的小波母函数具有不同的形状和时频局部化特性,适用于分析不同类型的信号。常用的连续小波母函数包括 Morlet 小波、Mexican Hat 小波、Gaussian 小波等。

Morlet 小波是常用的复小波,具有良好的时频局部化特性,形式如下:

ψ(t)=C⋅ejω0te−t2/(2σ2)

选择合适的小波母函数通常需要根据待分析信号的特点和研究目的。在轴承故障诊断中,常用的方法是尝试不同的小波母函数,并根据诊断效果进行选择。

3.4 连续小波变换在故障诊断中的优势

连续小波变换在轴承故障诊断中具有以下优势:

  • 多分辨率分析:

     能够同时关注信号在不同尺度上的特征,既能捕捉高频冲击成分,也能分析低频趋势变化。

  • 优越的局部化特性:

     在时域和频域都具有良好的局部化能力,能够精确地定位故障发生的时间和对应的频率成分。

  • 对瞬态信号敏感:

     特别适合分析轴承故障产生的冲击和瞬态信号。

  • 可视化效果好:

     小波系数可以绘制成时频图(Scalogram),直观地展示信号在不同时间和频率上的能量分布,便于人工判读和特征提取。

第四章 基于连续小波变换的轴承故障诊断流程

基于连续小波变换的轴承故障诊断通常遵循以下流程:

4.1 数据采集

通过加速度传感器或振动传感器采集轴承在不同工况(正常、内圈故障、外圈故障、滚动体故障等)下的振动信号。采集时需要注意传感器的安装位置、方向以及采样频率,以确保采集到的信号能够真实反映轴承的运行状态。

4.2 信号预处理

采集到的原始信号可能包含噪声、直流偏置等干扰。信号预处理的目的是提高信号的信噪比,去除无关成分。常见的预处理方法包括:

  • 滤波:

     利用带通滤波器去除高频噪声和低频干扰。

  • 去趋势:

     移除信号中的直流分量或低频趋势。

  • 降采样:

     根据 Nyquist 定理,在保证不损失有效信息的前提下降低采样率,减少计算量。

4.3 连续小波变换

4.4 特征提取

从连续小波变换的时频图中提取能够反映故障信息的特征。常见的特征提取方法包括:

  • 时频图的视觉分析:

     通过观察时频图中能量分布的特征模式,如周期性、能量聚集区域等,进行人工判断。

  • 能量特征:

     计算不同尺度或不同时间段内小波系数的能量或其统计量(如均值、方差、峰值等)作为特征。

  • 峭度:

     计算小波系数的峭度,峭度对冲击性信号敏感,可以作为故障特征。

  • 频谱熵:

     计算小波系数的频谱熵,反映能量在频率上的分布均匀性。

  • 其他统计特征:

     计算小波系数的其他统计特征,如偏度、峰度等。

更高级的特征提取方法还可以利用图像处理技术,将时频图视为图像,提取图像特征,如纹理特征、形状特征等。

4.5 故障诊断与分类

将提取到的特征输入到分类器中进行故障诊断与分类。常用的分类器包括:

  • 支持向量机(SVM):

     一种有效的二分类和多分类算法,特别适用于小样本和非线性问题。

  • K-近邻(KNN):

     基于距离度量的分类算法,简单易实现。

  • 神经网络(Neural Network):

     包括BP神经网络、卷积神经网络(CNN)等,能够学习复杂的非线性关系。

  • 决策树(Decision Tree):

     基于树状结构的分类算法,易于理解和解释。

  • 朴素贝叶斯(Naive Bayes):

     基于贝叶斯定理的概率分类算法。

在分类前,通常需要对特征进行归一化处理,以消除不同特征之间的量纲差异。

4.6 诊断结果评估

对分类器的诊断结果进行评估。常用的评估指标包括:

  • 准确率(Accuracy):

     正确分类样本数占总样本数的比例。

  • 精确率(Precision):

     预测为正类样本中实际为正类的比例。

  • 召回率(Recall):

     实际为正类样本中预测为正类的比例。

  • F1分数:

     精确率和召回率的调和平均数。

  • 混淆矩阵(Confusion Matrix):

     展示实际类别和预测类别之间的对应关系。

通过这些评估指标,可以量化诊断方法的性能。

第五章 挑战与未来展望

基于连续小波变换的轴承故障诊断研究虽然取得了显著进展,但也面临一些挑战:

  • 小波母函数的选择:

     合适的小波母函数选择依赖于先验知识或试错,缺乏通用的选择准则。

  • 尺度范围的确定:

     确定合适的尺度范围需要考虑信号的频率特性和计算效率。

  • 计算量大:

     连续小波变换的计算量相对较大,尤其是在处理长时序信号时。

  • 特征冗余与特征选择:

     提取到的特征可能存在冗余,需要进行特征选择以提高诊断效率和准确率。

  • 受工况变化的影响:

     轴承故障信号受设备转速、负载等工况变化的影响较大,模型的泛化能力有待提高。

  • 早期故障的检测:

     早期故障信号微弱,容易被噪声掩盖,如何更有效地提取早期故障特征是研究热点。

未来研究方向可以包括:

  • 自适应小波变换:

     研究基于信号特点的自适应小波变换方法,无需人工选择小波母函数和尺度。

  • 小波包变换:

     结合小波包变换的多分辨率分解和重构能力,提取更丰富的频带信息。

  • 与其他时频分析方法的融合:

     将连续小波变换与其他时频分析方法(如同步压缩变换、VMD等)结合,优势互补。

  • 深度学习与小波变换结合:

     利用深度学习模型(如CNN)自动从时频图中提取故障特征,克服手工特征提取的局限性。

  • 迁移学习:

     利用在已有数据集上训练的模型,迁移到新的数据集或新的设备上进行诊断,提高模型的泛化能力。

  • 抗噪声鲁棒性研究:

     提高连续小波变换及后续特征提取、分类方法对噪声的鲁棒性。

  • 故障程度评估与预测:

     不仅诊断故障类型,还能评估故障的严重程度和预测故障发生时间。

结论

本文系统阐述了基于连续小波变换的轴承故障诊断研究。从轴承故障机理、信号特征出发,详细介绍了连续小波变换的原理及其在故障诊断中的优势。梳理了基于连续小波变换的轴承故障诊断流程,并以凯斯西储大学轴承数据集为例,探讨了其在实际应用中的可行性。实证分析表明,连续小波变换能够有效地提取轴承故障的时频特征,为故障诊断提供有力支持。尽管当前研究仍面临一些挑战,但随着信号处理和机器学习技术的不断发展,基于连续小波变换的轴承故障诊断方法有望在工业实践中发挥越来越重要的作用,为保障设备安全运行和提高生产效率做出贡献。未来的研究应着重于提高方法的鲁棒性、自适应性和泛化能力,以更好地应对复杂多变的工业环境。

⛳️ 运行结果

🔗 参考文献

[1] 庄雨璇.基于深度学习的旋转轴承端到端故障诊断研究[D].苏州大学,2019.

[2] 薛妍,沈宁,窦东阳.基于一维卷积神经网络的滚动轴承故障程度诊断[J].轴承, 2021.DOI:10.19533/j.issn1000-3762.2021.04.011.

[3] 邵彩幸,于越,段琼,等.基于嵌入式与OpenCV的目标识别系统研究[J].西南民族大学学报:自然科学版, 2018, 44(5):5.DOI:CNKI:SUN:XNMZ.0.2018-05-011.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值