【Koopman】遍历论、动态模态分解和库普曼算子谱特性的计算研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

在复杂非线性动力系统分析领域,传统线性化方法往往局限于平衡点邻域,难以刻画系统全局动态行为。Koopman算子理论的出现打破了这一桎梏,其核心优势在于将非线性系统的演化转化为无限维线性空间中可观测量的线性演化,为全局动力学分析提供了全新视角。遍历论为Koopman算子的理论根基提供了坚实支撑,动态模态分解(DMD)及其扩展方法则搭建了数据驱动的算子逼近桥梁,而库普曼算子谱特性的计算则是揭示系统固有动态规律的关键途径。三者有机融合,构成了“理论基础-数值方法-特性提取”的完整研究体系,在流体动力学、分子动力学、气候科学、复杂网络等诸多领域展现出巨大应用价值。本文将系统梳理三者的内在关联,深入探讨库普曼算子谱特性的计算方法,并展望该领域的前沿发展方向。

一、理论基础:Koopman算子与遍历论的内在关联

1.1 Koopman算子的核心定义与线性化机制

Koopman算子由Koopman于1931年首次提出,是定义在动力系统可观测量空间上的无限维线性算子。对于给定的非线性动力系统,其状态空间为\(X\),流映射为\(\Phi_t: X \to X\)(连续时间\(t \in \mathbb{R}\)),Koopman算子\(\mathcal{U}_t\)作用于可观测量\(g: X \to \mathbb{C}\)时,满足如下核心关系:

\(\mathcal{U}_t g(x) = g(\Phi_t(x))\)

这一定义的本质是将非线性系统状态的演化,转化为可观测量空间中的线性演化——尽管原系统状态演化可能高度非线性,但可观测量在Koopman算子作用下的变化始终保持线性特性。这种线性化机制突破了传统泰勒展开线性化的局部性限制,实现了对系统全局动态行为的刻画,为后续谱分析奠定了基础。

1.2 遍历论的支撑作用与核心价值

遍历论关注动力系统长时间演化下的统计特性与极限行为,其与Koopman算子的结合构成了非线性动力学分析的重要理论框架。从理论本质上看,遍历论通过“系统演化的统计平均等价于空间平均”的核心思想,为Koopman算子的不变性分析、谱测度构建提供了关键支撑。在保度测度的遍历性设定下,与给定可观测量相关的Koopman算子谱测度的矩,可以直接从该可观测量的单条轨迹数据中计算得到——这一重要结论架起了理论分析与数据驱动计算之间的桥梁,使得从有限观测数据中提取无限维Koopman算子的谱信息成为可能。

具体而言,遍历论中的遍历分解定理揭示了Koopman算子的“块对角化”特性:Koopman算子在不同遍历分量上的作用相互独立,可分解为各遍历分量上算子的直和。这一特性不仅简化了Koopman算子的谱分析过程,还为理解系统的亚稳态行为(如分子动力学中蛋白质折叠过程的亚稳态转换)提供了理论依据——通过谱特性分析可精准识别遍历分量对应的系统模态,进而揭示系统在不同亚稳态之间的转移规律。此外,遍历论中的混合性、各态历经性等概念,还与Koopman算子谱的连续性(绝对连续谱、奇异连续谱)密切相关,为谱特性的分类与解读提供了理论标准。

二、方法桥梁:动态模态分解与Koopman算子的近似关系

2.1 动态模态分解(DMD)的基本原理

动态模态分解(DMD)是一种数据驱动的降维与动态模式提取方法,其核心思想是通过对系统时间序列数据的分析,提取主导系统演化的动态模态及对应的增长率/频率,实现对系统未来状态的预测。DMD的核心步骤可概括为:首先构建数据矩阵\(X\)(列向量为各时刻系统状态)与滞后数据矩阵\(Y\)(列向量为\(X\)对应列的下一时段状态),满足\(Y \approx A X\)(\(A\)为系统演化矩阵);随后通过奇异值分解(SVD)对\(X\)降维,得到\(X = U \Sigma V^*\)(\(U\)、\(V\)为正交矩阵,\(\Sigma\)为对角奇异值矩阵);最终通过伪逆计算得到演化矩阵的近似\(\tilde{A} = Y V \Sigma^{-1} U^*\),对\(\tilde{A}\)进行特征值分解即可得到动态模态的频率与增长率。

2.2 DMD与Koopman算子的本质关联

DMD与Koopman算子的核心关联在于:DMD本质上是Koopman算子在有限维可观测量空间中的近似。当DMD所选用的可观测量(即系统状态变量)张成的空间包含Koopman算子的特征函数时,DMD计算得到的演化矩阵\(\tilde{A}\)的特征值将收敛于Koopman算子的真实特征值,对应的特征向量则近似Koopman特征函数的空间分布。这一关联使得DMD成为首个将Koopman算子理论落地的数值方法,解决了Koopman算子无限维特性难以直接计算的核心难题。

为提升对强非线性系统的逼近能力,研究者在传统DMD基础上提出了扩展动态模态分解(EDMD)等改进方法。EDMD通过引入非线性可观测量库(如多项式、径向基函数、核函数等),将原状态空间提升至更高维的可观测量空间,再在该空间中应用DMD原理逼近Koopman算子。其核心优势在于通过丰富可观测量的表达能力,更精准地捕捉Koopman算子的谱特性,尤其适用于传统DMD难以处理的混沌系统、强耦合系统。此外,近年来提出的乘法动态模态分解(MultDMD)通过引入乘法算子约束,优化了可观测量选择与矩阵逼近精度,进一步强化了DMD类方法对Koopman算子的逼近性能。

三、核心目标:库普曼算子谱特性的计算方法与应用价值

3.1 库普曼算子谱特性的核心内涵与物理意义

Koopman算子的谱特性主要包括特征值、特征函数及谱测度,其直接编码了非线性系统的全局动态信息,是分析系统行为的核心依据。从物理意义上看,Koopman特征值的模值反映了对应动态模态的增长/衰减速率(模值>1表示模态增长,模值<1表示模态衰减,模值=1表示模态守恒),辐角则对应模态的振荡频率;Koopman特征函数则描述了该模态在系统状态空间中的空间分布,其取值变化反映了模态的强度分布规律。

根据遍历论视角下的谱分类,Koopman算子的谱可分为原子谱(点谱,对应离散特征值)、绝对连续谱和奇异连续谱三类。其中,原子谱对应系统的周期模态、稳定模态等规则动态行为,绝对连续谱对应系统的混合行为(如流体混合过程),奇异连续谱则常见于复杂混沌系统。谱测度则综合描述了不同谱分量的分布密度,其矩信息可通过遍历性从单条系统轨迹中提取,是谱特性计算的重要基础。

3.2 谱特性的主要计算方法与比较

当前库普曼算子谱特性的计算方法可分为解析方法与数据驱动方法两大类,两类方法各有优劣,适用于不同场景的系统分析。

解析方法通过求解Koopman算子的特征方程直接获取谱特性,其优势在于计算精度高、理论严谨性强,但仅适用于结构简单、可建立精确数学模型的动力系统(如二维环面自同构系统)。对于实际工程中的复杂系统(如流体流动、化学反应器),由于难以建立精确模型,解析方法往往无法应用,此时数据驱动方法成为主流选择。

数据驱动方法以DMD/EDMD类方法为基础,结合谱测度重建、核函数逼近等技术,实现对Koopman谱特性的数值计算,主要包括以下三类代表性方法:

  • DMD/EDMD及其变体:适用于数据量适中、系统非线性程度适中的场景,计算效率高、实现简单,是工程领域应用最广泛的方法。但对于混沌系统、高维系统,其逼近精度易受可观测量选择的影响。

  • 基于矩问题的谱重建方法:利用遍历性从单条轨迹中计算谱测度的矩,再通过Christoffel-Darboux核分离谱的原子部分与连续部分,实现谱特性的高精度重建。该方法具有严格的收敛保证,且计算复杂度与系统状态空间维度无关,适用于大规模系统,但需要足够多的矩信息才能保证精度。

  • 核函数与物理信息驱动方法:通过核积分算子对Koopman生成元进行紧化处理,将无限维算子逼近转化为变分广义特征值问题,结合物理方程信息(如流体力学N-S方程)提升谱逼近的一致性与稳定性。这类方法(如Physics-informed Koopman方法)适用于数据稀缺场景,且能保证大样本极限下的收敛性,是近年来的研究热点。

3.3 谱特性计算的典型应用场景

Koopman算子谱特性的计算结果已在多个领域实现成功应用:在流体动力学中,通过谱特性分析可提取流场的相干结构(如涡旋模态),预测流场演化趋势,为飞行器设计、管道减阻提供指导;在分子动力学中,利用谱特性识别蛋白质折叠过程的亚稳态及转移路径,揭示生物分子的功能机制;在复杂网络分析中,结合图拉普拉斯算子与Koopman谱分析,可识别网络中的弱耦合集群,解释网络的同步行为与抗干扰能力;在控制领域,通过谱特性设计模型预测控制(MPC)策略,已成功应用于时变CartPole系统、化工反应过程等非线性时变系统的稳定控制。

四、挑战与未来展望

尽管遍历论、DMD与Koopman谱分析的融合体系已取得显著进展,但当前研究仍面临三大核心挑战:一是强非线性、高维系统的谱特性计算精度不足,现有方法难以平衡计算效率与逼近精度;二是时变系统中Koopman算子的动态演化难以精准建模,传统静态逼近方法易失效;三是谱特性的物理可解释性不足,尤其是连续谱与系统复杂行为的关联尚未完全明确。

针对上述挑战,未来研究可从三个方向突破:其一,融合机器学习与Koopman理论,如近期提出的MamKO框架将Mamba模型的时序建模能力与Koopman算子结合,实现时变Koopman算子的高效生成,显著提升时变系统的建模与控制性能;其二,发展多尺度谱分析方法,结合小波变换、多分辨率分析等技术,精准分离不同时间尺度的谱分量,揭示系统的多尺度动态行为;其三,深化遍历论与谱特性的理论关联,建立谱类型(原子谱/连续谱)与系统遍历性、混合性的定量关系,为谱特性的物理解读提供更坚实的理论支撑。此外,将Koopman谱分析与数字孪生、实时控制结合,开发适用于工业级系统的高效计算工具,将是该领域从理论研究走向工程应用的关键方向。

五、结论

遍历论、动态模态分解与库普曼算子谱特性计算构成了非线性动力系统分析的“理论-方法-目标”三位一体体系:遍历论为Koopman算子的谱分析提供了坚实的理论基础与数据利用依据,动态模态分解及其扩展方法搭建了无限维Koopman算子的有限维逼近桥梁,而谱特性计算则通过提取特征值、特征函数等核心信息,实现对系统全局动态行为的精准刻画。三者的有机融合不仅推动了非线性动力学理论的发展,更在多个工程与科学领域实现了成功应用。未来,随着机器学习、大数据技术的深度融合,该体系将在时变系统、大规模系统的分析与控制中发挥更大作用,为复杂系统的精准建模与优化提供更强大的工具。

⛳️ 运行结果

图片

图片

图片

图片

图片

🔗 参考文献

[1] 彭辉.基于动态模态分解的几类应用研究[D].郑州大学[2025-12-19].

[2] 洪菁菁.基于频谱分解方法的锂离子电池RUL预测[D].华中科技大学[2025-12-19].

[3] 唐丽.基于数据驱动建模的高速列车速度控制研究[D].兰州交通大学[2025-12-19].

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值