【指纹处理】指纹提取和修复(Matlab实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

一、引言

指纹作为个体独一无二的生物特征标识,在刑侦破案、身份识别、门禁安防等众多关键领域发挥着基石作用。然而,在实际场景中,指纹样本往往由于采集条件不佳、承载客体受损、时间侵蚀等诸多因素,导致其清晰度下降、特征残缺甚至模糊难辨,给后续的识别与分析工作带来巨大挑战。指纹提取和修复技术应运而生,旨在运用先进的图像处理、模式识别及计算机视觉手段,从复杂背景或劣化样本中精准提取指纹有效信息,并对残缺、模糊指纹进行修复还原,以满足高精度指纹识别需求,提升各领域工作效能与安全性。

二、指纹提取原理与方法

1. 基于物理特性的提取方法:光学提取:利用光的反射、折射、干涉等特性,当光线照射指纹所在客体表面时,指纹的脊和谷因表面高度差异呈现不同的光学特性。通过配备特定光学系统的设备,如全反射式指纹采集仪,捕捉指纹区域与背景区域光线反射强度差异形成的图像,能够清晰获取指纹纹理,适用于光滑平面客体上的指纹提取,广泛应用于传统指纹采集卡录入场景。电容式提取:基于指纹脊和谷与传感器极板间电容值变化原理工作。手指接触电容式传感器表面,脊部与极板距离近、电容大,谷部距离远、电容小,传感器依据电容差值矩阵构建指纹图像,对活体手指指纹提取灵敏度高、分辨率佳,常见于智能手机、平板电脑等移动设备指纹解锁模块。 2. 基于化学试剂的提取方法:碘熏法:利用碘的升华特性,使碘蒸汽与指纹残留物中的油脂、汗液等有机成分发生吸附作用,指纹区域显现出棕色斑纹,随后用淀粉溶液固定显色指纹,便于拍照提取。该方法操作简单、成本低廉,常用于纸张、木材等多孔性客体指纹提取,但可能对指纹造成一定程度污染,且显色指纹保存时间有限。茚三酮显现法:茚三酮与指纹中的氨基酸成分发生化学反应,在加热或湿度适宜条件下生成紫色化合物,清晰显现指纹纹路。此方法对陈旧指纹、含氨基酸丰富的指纹显现效果突出,尤其适用于皮革、织物等客体,不过处理过程需严格控制温度、湿度,以防过度反应破坏指纹特征。

三、指纹修复原理与技术

 1. 基于图像增强的修复技术:灰度变换:通过调整指纹图像的灰度值分布,突出指纹脊线与谷线对比度。例如采用直方图均衡化,将原始图像中较窄的灰度范围拉伸扩展至整个灰度区间,使原本模糊暗淡的指纹细节在亮度上更易区分,增强整体视觉清晰度,为后续特征提取奠定基础。滤波处理:运用低通滤波去除图像高频噪声,平滑背景干扰;高通滤波则强化指纹纹理等高频成分,凸显细节特征。如高斯滤波在抑制噪声的同时,保持指纹边缘相对平滑;中值滤波对椒盐噪声有良好去除效果,且能有效保护指纹脊线结构完整性,防止过度平滑丢失关键特征。 2. 基于数学模型的修复技术:偏微分方程(PDE)模型:以指纹图像的梯度、散度等数学概念构建方程,模拟指纹脊线的扩散、传输等物理过程。例如,基于热扩散方程的修复方法,将指纹图像类比为温度场,让图像从高能量(清晰区域)向低能量(模糊、残缺区域)扩散热量,逐步填补缺失纹理,使指纹趋于完整,在修复局部破损指纹时展现出强大的连贯性恢复能力。 基于神经网络的修复模型:利用深度学习强大的特征学习与模式重建能力,构建卷积神经网络(CNN)、生成对抗网络(GAN)等模型。CNN 通过对大量指纹样本学习,自动提取指纹特征层次结构,在修复时依据已知特征推断缺失部分;GAN 则由生成器与判别器对抗博弈,生成器尝试生成逼真指纹图像,判别器鉴别真伪,反复训练使生成器能高质量修复指纹,尤其适用于复杂模糊指纹的复原重建。

四、指纹提取与修复的应用场景

1. 刑侦司法领域:在犯罪现场勘查中,从各类复杂客体如玻璃碎片、金属凶器、木质门窗等上提取指纹,运用修复技术还原模糊指纹,与数据库比对锁定嫌疑人,为案件侦破提供关键线索,是刑侦证据链构建不可或缺环节。 2. 边境管控与安防安检:海关、机场等出入境口岸及重要安保场所,对人员身份核验严格。指纹提取修复技术助力快速、精准采集旅客指纹,甄别伪造指纹,确保身份真实性,防范非法出入境与恐怖袭击风险,保障公共安全。 3. 民用身份识别领域:企业门禁系统、智能门锁等利用指纹提取修复保障出入安全,即便手指有轻微污渍、磨损,经修复处理仍能准确识别,提升用户体验;金融机构在客户开户、大额交易等环节采用指纹识别,提取修复技术保障指纹识别稳定可靠,防止身份冒用,守护资金安全。

五、面临的挑战与发展趋势

1. 挑战:复杂背景干扰:现实场景中指纹常附着于复杂纹理、图案背景客体,如布满花纹的陶瓷、带有印刷图案的纸张,如何精准分割指纹区域、排除背景噪声干扰,仍是提取环节难题,易导致提取指纹误判、漏判。 低质量指纹修复限度:对于极度模糊、大面积残缺指纹,现有修复技术虽有进展,但修复后指纹识别准确率提升有限,难以满足高精度识别需求,尤其在刑侦疑难案件中,关键指纹修复失败可能阻碍案件侦破进程。 实时性与准确性权衡:在安防门禁、移动设备解锁等实时性要求高场景,既要快速提取修复指纹,又要保证识别精度,目前技术在二者平衡上仍有优化空间,如快速处理算法可能牺牲部分准确性,影响用户体验与安全保障。 2. 发展趋势:多模态融合技术:结合指纹与其他生物特征如人脸、虹膜,或融合多种指纹采集技术优势,全方位获取个体特征信息,弥补单一指纹特征短板,提升识别可靠性与抗伪造能力,如开发集成光学与电容式指纹采集的复合型设备,适应复杂应用场景。人工智能驱动的自适应修复:借助深度学习算法的自学习、自适应特性,让修复系统根据不同指纹质量、类型自动调整修复策略,实时优化模型参数,实现个性化、智能化修复,应对复杂多变的指纹劣化情况。微型化、便携化指纹提取修复设备:随着物联网、移动办公需求增长,研发小型化、低功耗、易于携带的指纹提取修复装置,如可穿戴式指纹采集器、便携式刑侦指纹勘查箱,拓展指纹技术应用边界,实现随时随地精准指纹处理。

六、结论

指纹提取和修复技术作为生物识别领域核心支撑,历经多年发展,已在多领域取得斐然成效,为维护社会安全、便捷生活服务提供关键助力。虽面临挑战重重,但在技术创新、跨领域融合浪潮推动下,有望突破局限,迈向更高精度、更强适应性、更广应用的新征程,持续书写指纹技术传奇,赋能未来发展。

📚2 运行结果

主函数部分代码:

clear
close all;

a = imread('f_thin.bmp');
b = false(size(a));                 % b 用来存储端点
c = b;                              % c 用来存储交叉点

se = strel('disk',2);               % 用于最后处理找出的细节点的膨胀的结构元素

for i = 2:size(a,1)-1
    for j = 2:size(a,2)-1
        if a(i,j) == 0
            continue;               % 端点和交叉点一定是指纹上的点,所以舍去0像素点
        end
        cn = abs( a(i-1,j)-a(i-1,j-1)); 
        cn = cn + abs(a(i-1,j+1)-a(i-1,j));
        cn = cn + abs(a(i,j+1)-a(i-1,j+1));
        cn = cn + abs(a(i+1,j+1)-a(i,j+1));
        cn = cn + abs(a(i+1,j)-a(i+1,j+1));
        cn = cn + abs(a(i+1,j-1)-a(i+1,j));
        cn = cn + abs(a(i,j-1)-a(i+1,j-1));
        cn = cn + abs(a(i-1,j-1)-a(i,j-1));
        cn = cn / 2;                %   以上得到交叉数cn的值
        if cn == 1
            b(i,j) = 1;             %   端点
        end
        if cn == 3
            c(i,j) = 1;             %   交叉点
        end
    end
end

a = im2uint8(a);
a = cat(3,a,a,a);                   % 原图变成3通道的rgb图

b = imdilate(b,se) - b;             % 把端点膨胀后得到在减去原端点,得到“空心的圈”
b = im2uint8(b);
b0 = zeros(size(b));
b0 = im2uint8(b0);
b = cat(3,b0,b,b0);                 % 把仅有端点空心圈的灰度图变为rgb图,r、b分量都是全0,仅留下绿色圈

c = imdilate(c,se) - c;             % 把交叉点膨胀后得到在减去原交叉点,得到“空心的圈”
c = im2uint8(c);
c0 = zeros(size(c));
c0 = im2uint8(c0);
c = cat(3,c,c0,c);                  % 把仅有交叉点空心圈的灰度图变为rgb图,g分量是全0,留下r、b分量,显紫色圈


figure(1),
ax(1)=subplot(1,3,1); imshow(a); title('Origin');
ax(2)=subplot(1,3,2); imshow(b); title('Endpoint');
ax(3)=subplot(1,3,3); imshow(c); title('Bifurcation');

linkaxes(ax);

figure, imshow(b);
figure, imshow(c);

imwrite(b,'Endpoint.bmp');
imwrite(c,'Bifurcation.bmp');

res = a + b + c;                    % 将2种细节点的圈图加到原图上,呈现非常美丽的效果
figure,imshow(res,[]),title('Green for Endpoints, Purple for Bifurcation');
imwrite(res,'FingerPrint_Final.bmp');

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]张如.OLED屏下指纹图像修复与特征提取技术研究[D].华中科技大学,2021.DOI:10.27157/d.cnki.ghzku.2021.002883.

[2]陈沛华,陈晓光.参照法修复指纹图像中的断裂线条[J].电路与系统学报,2004,(06):118-121.

🌈4 Matlab代码实现

图片

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值