【下垂控制与虚拟同步机】下垂控制与虚拟同步机两种并网型(grid-forming)控制策略的性能研究(Simulink仿真实现)

   💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文内容如下:🎁🎁🎁

 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥第一部分——内容介绍

下垂控制与虚拟同步机两种并网型控制策略的性能研究

摘要

随着可再生能源大规模接入电网,并网型变流器(grid-forming converter)的动态特性对系统稳定性影响显著。本文基于5 MW变流器模型,通过MATLAB/Simulink仿真对比下垂控制(Droop Control)与虚拟同步机(Virtual Synchronous Machine, VSM)在功率阶跃响应、电网扰动下的暂态性能及稳态功率分配能力。结果表明:下垂控制响应速度快但存在稳态偏差,且缺乏惯性支撑;VSM通过引入转子运动方程,可模拟同步机惯性,显著提升系统抗扰能力,但需优化参数以避免过阻尼。研究为高比例新能源电网的并网控制策略选择提供理论依据。

关键词

下垂控制;虚拟同步机;并网型变流器;功率分配;惯性支撑

1 引言

传统同步发电机因转动惯量(H)和阻尼特性,在电网频率波动时通过释放动能维持稳定。然而,随着光伏、风电等新能源通过变流器大规模并网,电网惯性持续下降,频率稳定性面临挑战。并网型变流器需具备自主构建电压和频率的能力,其控制策略分为下垂控制与虚拟同步机两类:

  • 下垂控制:模拟同步发电机一次调频特性,通过有功-频率(P-f)和无功-电压(Q-V)下垂曲线实现功率分配,无需通信,但本质为有差调节,缺乏惯性支撑。
  • 虚拟同步机:在控制算法中嵌入转子运动方程,使变流器外特性等效于同步机,可提供虚拟惯性(J)和阻尼(D),增强系统抗扰能力。

本文基于5 MW变流器模型,对比两种策略在功率阶跃、电网扰动下的性能差异,分析其适用场景及优化方向。

2 模型与方法

2.1 仿真模型配置

模型结构如图1所示,包含:

  • 变流器模块:直流侧电压2000 V,交流侧经阻抗(SCR=5,X/R=10)连接无穷大电网;
  • 控制策略模块:支持下垂控制与VSM模式切换,虚拟阻抗及内部电压/电流环可独立关闭;
  • 扰动施加模块:通过“690 V”电压源模块实现电压跌落(30%幅值)、频率阶跃(±0.5 Hz)及相位跳变(±10°)。

初始条件生成

  1. 取消“Initial state”勾选,启用“Final States”;
  2. 移除阶跃信号,设定有功/无功为常数(2 MW/0 Mvar);
  3. 运行仿真至稳态,保存终态变量xFinal
  4. 执行xInitial = xFinal; save MyModelInit xInitial生成初始条件文件;
  5. 恢复“Initial state”勾选,后续仿真自动加载初态。

2.2 控制策略数学模型

2.2.1 下垂控制

有功-频率下垂方程:

f=f0​−kp​(P−P0​)

无功-电压下垂方程:

V=V0​−kq​(Q−Q0​)

其中,kp​、kq​为下垂系数,f0​、V0​为额定频率和电压。

2.2.2 虚拟同步机控制

转子运动方程:

Jdtdω​=Tm​−Te​−D(ω−ω0​)

电磁转矩方程:

Te​=ωPe​​

其中,J为虚拟惯性常数,D为阻尼系数,Tm​为机械转矩(对应有功设定值),Te​为电磁转矩。

3 仿真结果与分析

3.1 功率阶跃响应

工况:0-10 s稳态运行(2 MW/0 Mvar),10 s时有功升至4 MW,20 s时无功升至3 Mvar。

下垂控制

  • 有功响应时间<0.1 s,但稳态频率偏差达0.2 Hz(因有差调节);
  • 无功响应时间<0.2 s,电压偏差0.5%(图2a)。

VSM控制

  • 有功响应时间≈0.3 s(因惯性环节延迟),但稳态频率偏差<0.05 Hz;
  • 无功响应时间≈0.5 s,电压偏差<0.2%(图2b)。

结论:下垂控制响应更快,但VSM通过惯性支撑显著减小稳态偏差。

3.2 电网频率阶跃扰动

工况:5 s时电网频率突降0.5 Hz,持续2 s后恢复。

下垂控制

  • 变流器频率跟随电网下降,输出功率短暂波动后恢复(因缺乏惯性,功率冲击达1.2 MW);
  • 电压幅值波动<1%(图3a)。

VSM控制

  • 虚拟惯性释放动能,频率下降速率减缓50%,功率冲击仅0.6 MW;
  • 电压幅值波动<0.5%(图3b)。

结论:VSM通过惯性支撑有效抑制频率变化率(RoCoF),提升系统抗扰能力。

3.3 多机并联功率分配

工况:两台5 MW变流器并联,下垂系数kp​=1%、kq​=5%,负载从4 MW突增至8 MW。

下垂控制

  • 功率按容量比例分配(各承担50%),但均流速度慢(需10 s达到稳态);
  • 频率偏差达0.3 Hz(图4a)。

VSM控制

  • 功率分配精度更高(误差<2%),均流速度提升3倍(3 s达稳态);
  • 频率偏差<0.1 Hz(图4b)。

结论:VSM通过阻尼环节加速功率分配,但需优化参数以避免过阻尼导致响应迟钝。

4 讨论

4.1 策略适用场景

  • 下垂控制:适用于对响应速度要求高、电网惯性充足的场景(如微电网孤岛运行);
  • VSM控制:适用于高比例新能源电网,需惯性支撑的场景(如大规模风电/光伏并网)。

4.2 参数优化方向

  • 下垂控制:通过自适应下垂系数调整,平衡响应速度与稳态精度;
  • VSM控制:优化虚拟惯性常数J与阻尼系数D,避免过阻尼或欠阻尼。

4.3 未来研究方向

  • 结合储能系统,实现VSM惯性与阻尼的动态调节;
  • 引入人工智能算法,实现控制参数的自适应优化。

5 结论

本文通过仿真对比下垂控制与VSM在5 MW变流器中的性能,得出以下结论:

  1. 下垂控制响应速度快但缺乏惯性支撑,适用于微电网孤岛运行;
  2. VSM通过模拟同步机特性,显著提升系统抗扰能力,适用于高比例新能源电网;
  3. 未来需进一步优化参数设计,推动VSM在大规模并网中的应用。

📚第二部分——运行结果

🎉第三部分——参考文献 

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

🌈第四部分——本文完整资源下载

资料获取,更多粉丝福利,MATLAB|Simulink|Python|数据|文档等完整资源获取

                                                           在这里插入图片描述

基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模不确定性或外界扰动的实际控制系统中,提升控制精度鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析仿真验证相结合。
先展示下效果 https://pan.quark.cn/s/a4b39357ea24 本项目是本人参加BAT等其他公司电话、现场面试之后总结出来的针对Java面试的知识点或真题,每个点或题目都是在面试中被问过的。 除开知识点,一定要准备好以下套路: 个人介绍,需要准备一个1分钟的介绍,包括学习经历、工作经历、项目经历、个人优势、一句话总结。 一定要自己背得滚瓜烂熟,张口就来 抽象概念,当面试官问你是如何理解多线程的时候,你要知道从定义、来源、实现、问题、优化、应用方面系统性地回答 项目强化,至少知识点的比例是五五开,所以必须针对简历中的两个以上的项目,形成包括【架构和实现细节】,【正常流程和异常流程的处理】,【难点+坑+复盘优化】三位一体的组合拳 压力练习,面试的时候难免紧张,可能会严重影响发挥,通过平时多找机会参交流分享,或找人做压力面试来改善 表达练习,表达能力非常影响在面试中的表现,能否简练地将答案告诉面试官,可以通过给自己讲解的方式刻意练习 重点针对,面试官会针对简历提问,所以请针对简历上写的所有技术点进行重点准备 Java基础 JVM原理 集合 多线程 IO 问题排查 Web框架、数据库 Spring MySQL Redis 通用基础 操作系统 网络通信协议 排序算法 常用设计模式 从URL到看到网页的过程 分布式 CAP理论 锁 事务 消息队列 协调器 ID生成方式 一致性hash 限流 微服务 微服务介绍 服务发现 API网关 服务容错保护 服务配置中心 算法 数组-快速排序-第k大个数 数组-对撞指针-最大蓄水 数组-滑动窗口-最小连续子数组 数组-归并排序-合并有序数组 数组-顺时针打印矩形 数组-24点游戏 链表-链表反转-链表相加 链表-...
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值