💥💥💞💞欢迎来到Matlab仿真科研站博客之家💞💞💥💥
✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。
🍎个人主页:Matlab仿真科研站博客之家
🏆代码获取方式:
💥扫描文章底部QQ二维码💥
⛳️座右铭:行百里者,半于九十;路漫漫其修远兮,吾将上下而求索。
⛄更多Matlab图像处理(仿真科研站版)仿真内容点击👇
Matlab图像处理(仿真科研站版)
⛄一、简介
1 案例背景
视觉通道是人类感知外部世界的主要入口,图像则是多维度信息最直接的表现方式,更有“一图值千金”的谚语。但是,图像往往包含较多的信息量,文本方式很难表达其全面内容,因此对图像信息进行检索很难进行抽象建模。此外,随着互联网信息技术的发展,如何有效地存储、检索海量图像数据也越来越引起人们的关注。因此,通过有效构建图像数据库,搭建图像检索引擎,高效地利用图像的关键数据信息,结合已有的搜索技术来实现海量图像的智能检索系统具有重要的现实意义。目前许多主流的搜索引擎均提供了图像搜索通道,如谷歌相似图搜索、百度识图等。搜索图像时不仅可以根据与图像相关联的文字信息来搜索,而且能够按照图像内容本身来搜索,具有很高的使用价值。
本案例介绍了基于内容的图像检索的基本知识,但主要研究的是基于形状的图像检索技术,通过提取图像特征并进行建库来进行智能检索。本案例选择以图像Hu不变矩特征为标准来进行图像检索,其基本步骤为:首先,对待检索图像利用边缘检测算子进行边缘检测;其次,利用Hu的7个不变矩作为形状特征向量;再次,进行图像的相似度匹配;最后, 在图像库中检索出最相近的Top 10图像序列作为检索结果。实验结果表明, 使用该算法可以有效地检索出相似的图像,具有一定的使用价值。
2 理论基础
随着人们对多媒体信息检索需求的不断增加,传统的基于人工注解的图像检索系统无法实现灵活、高效、准确的图像检索,已远远不能满足人们的需求。为此,研究者们提出了基于内容的图像检索(Content-based Imagine Retrieval, CBIR) , 该方法有效利用了图像自身特征并参考某些模式识别技术来进行高效能图像检索,其基本思路是:将图像的可视特征如颜色特征、纹理结构、边缘轮廓、位置关系等作为图像内容来进行匹配查找,利用已有的模式识别算法进行相似度计算,实现目标检索。其中,图像特征抽取和匹配完全可以借助于数字图像处理技术自动完成,节省了人工成本,提高了执行效率。图像变换在离散数据的条件下往往是不连续的,除平移变换外,旋转和尺度等变换均会导致图像的像素数目变化,从而使计算结果产生误差,而基于不变矩的形状描述可以在一定程度上保存原有的形状信息,具有稳定性,因此可以选择不变矩作为特征进行图像检索。在实际处理过程中,图像的大小可能会影响不变矩特征值,所以在进行图像相似性匹配之前应将图像库中的图像进行尺寸统一化操作,建立标准的图像库。以一幅彩色RGB图像为例, 计算其Hu不变矩特征量的过程为:首先, 将一幅彩色RGB的图像转换为灰度图像,对其进行二值化;然后,归一化二值图像的尺寸,提取边缘图像:最后,统一计算其Hu不变矩。其中,在得到二值边缘图像后,就可以利用不变矩的公式提取不变矩,组成特征向量。在实际处理过程中,考虑到图像库不变矩的计算复杂度较高,因此可以预先执行建库算法,提取其7个Hu不变矩特征,存放于图像的形状特征索引库中,将其提供给图像检索流程来执行图像查询,返回检索结果排序。其中,计算图像Hu不变矩并建库的过程如下所述。
(1)边缘图像
确定边缘提取算子对图像进行边缘提取,得到边缘图像。
(2)提取轮廓
确定边缘图像,并进行轮廓跟踪,得到外轮廓图像。
(3)细化轮廓
确定外轮廓图像,并进行预处理:首先,平滑轮廓得到连续的轮廓线,采用自适应二值化的方法二值化该轮廓线:然后,轮廓线细化操作:最后,提取连续平滑、单像素、二值化的外轮廓图像。
(4)目标区域
确定经过细化的外轮廓图像,并进行种子填充,获取图像的外轮廓线所包围的目标区域作为输入图像。
(5)不变矩计算
确定目标区域图像,并计算目标区域的7个Hu不变矩,将其构造成这幅图像的形状特征向量。
(6)归一化
确定形状特征向量,并对其进行内部归一化处理,将特征值存入图像特征库。
3 LBP纹理图像检索(含LBP响应图)
LBP(Local Binary Pattern)纹理图像检索是一种常用的图像特征描述方法,用于图像检索和分类任务。它通过对图像中的局部区域进行纹理特征提取,来描述图像的纹理信息。
LBP算法的原理如下:
(1)对于图像中的每个像素点,将其与周围的像素进行比较。通常选择以该像素为中心的8个邻域像素(或者更多)。
将邻域像素与中心像素进行比较,如果邻域像素的灰度值大于等于中心像素,则将该位置的二进制编码设为1,否则设为0。
将得到的二进制编码按顺时针方向连接起来,形成一个二进制数。
将得到的二进制数转换为十进制数,作为该像素点的LBP值。
通过对图像中每个像素点进行上述操作,可以得到一个LBP图像,其中每个像素点的值表示该点的纹理特征。LBP图像可以用于图像检索和分类任务。
⛄二、部分源代码
function varargout = main(varargin)
% MAIN MATLAB code for main.fig
% MAIN, by itself, creates a new MAIN or raises the existing
% singleton*.
%
% H = MAIN returns the handle to a new MAIN or the handle to
% the existing singleton*.
%
% MAIN(‘CALLBACK’,hObject,eventData,handles,…) calls the local
% function named CALLBACK in MAIN.M with the given input arguments.
%
% MAIN(‘Property’,‘Value’,…) creates a new MAIN or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before main_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to main_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE’s Tools menu. Choose “GUI allows only one
% instance to run (singleton)”.
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% Edit the above text to modify the response to help main
% Last Modified by GUIDE v2.5 23-Mar-2024 18:40:39
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct(‘gui_Name’, mfilename, …
‘gui_Singleton’, gui_Singleton, …
‘gui_OpeningFcn’, @main_OpeningFcn, …
‘gui_OutputFcn’, @main_OutputFcn, …
‘gui_LayoutFcn’, [] , …
‘gui_Callback’, []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% — Executes just before main is made visible.
function main_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to main (see VARARGIN)
axes( handles.axes1 ) ;
imshow( ‘img\2.jpg’ ) ;
% Choose default command line output for main
handles.output = hObject;
% Update handles structure
guidata(hObject, handles); % һ
% UIWAIT makes main wait for user response (see UIRESUME)
% uiwait(handles.figure1);
% — Outputs from this function are returned to the command line.
function varargout = main_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
% — Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global filename;
global pathname;
[filename,pathname]=uigetfile({‘.jpg;.tif;.png;.jpg’,‘All Image Files’;…
‘.’,‘All Files’ });
inimg=imread([pathname,filename]);
%gfilename=filename;
%gpathname=pathname;
axes( handles.axes1 ) ;
imshow(inimg);
% — If Enable == ‘on’, executes on mouse press in 5 pixel border.
% — Otherwise, executes on mouse press in 5 pixel border or over pushbutton1.
function pushbutton1_ButtonDownFcn(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
⛄三、运行结果
⛄四、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1]郝成成,张洁,余萍.基于小波分解和Hu不变矩的图像检索算法[J].东莞理工学院学报. 2018,25(05)
3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除
🍅 仿真咨询
1 各类智能优化算法改进及应用
1.1 PID优化
1.2 VMD优化
1.3 配电网重构
1.4 三维装箱
1.5 微电网优化
1.6 优化布局
1.7 优化参数
1.8 优化成本
1.9 优化充电
1.10 优化调度
1.11 优化电价
1.12 优化发车
1.13 优化分配
1.14 优化覆盖
1.15 优化控制
1.16 优化库存
1.17 优化路由
1.18 优化设计
1.19 优化位置
1.20 优化吸波
1.21 优化选址
1.22 优化运行
1.23 优化指派
1.24 优化组合
1.25 车间调度
1.26 生产调度
1.27 经济调度
1.28 装配线调度
1.29 水库调度
1.30 货位优化
1.31 公交排班优化
1.32 集装箱船配载优化
1.33 水泵组合优化
1.34 医疗资源分配优化
1.35 可视域基站和无人机选址优化
2 机器学习和深度学习分类与预测
2.1 机器学习和深度学习分类
2.1.1 BiLSTM双向长短时记忆神经网络分类
2.1.2 BP神经网络分类
2.1.3 CNN卷积神经网络分类
2.1.4 DBN深度置信网络分类
2.1.5 DELM深度学习极限学习机分类
2.1.6 ELMAN递归神经网络分类
2.1.7 ELM极限学习机分类
2.1.8 GRNN广义回归神经网络分类
2.1.9 GRU门控循环单元分类
2.1.10 KELM混合核极限学习机分类
2.1.11 KNN分类
2.1.12 LSSVM最小二乘法支持向量机分类
2.1.13 LSTM长短时记忆网络分类
2.1.14 MLP全连接神经网络分类
2.1.15 PNN概率神经网络分类
2.1.16 RELM鲁棒极限学习机分类
2.1.17 RF随机森林分类
2.1.18 SCN随机配置网络模型分类
2.1.19 SVM支持向量机分类
2.1.20 XGBOOST分类
2.2 机器学习和深度学习预测
2.2.1 ANFIS自适应模糊神经网络预测
2.2.2 ANN人工神经网络预测
2.2.3 ARMA自回归滑动平均模型预测
2.2.4 BF粒子滤波预测
2.2.5 BiLSTM双向长短时记忆神经网络预测
2.2.6 BLS宽度学习神经网络预测
2.2.7 BP神经网络预测
2.2.8 CNN卷积神经网络预测
2.2.9 DBN深度置信网络预测
2.2.10 DELM深度学习极限学习机预测
2.2.11 DKELM回归预测
2.2.12 ELMAN递归神经网络预测
2.2.13 ELM极限学习机预测
2.2.14 ESN回声状态网络预测
2.2.15 FNN前馈神经网络预测
2.2.16 GMDN预测
2.2.17 GMM高斯混合模型预测
2.2.18 GRNN广义回归神经网络预测
2.2.19 GRU门控循环单元预测
2.2.20 KELM混合核极限学习机预测
2.2.21 LMS最小均方算法预测
2.2.22 LSSVM最小二乘法支持向量机预测
2.2.23 LSTM长短时记忆网络预测
2.2.24 RBF径向基函数神经网络预测
2.2.25 RELM鲁棒极限学习机预测
2.2.26 RF随机森林预测
2.2.27 RNN循环神经网络预测
2.2.28 RVM相关向量机预测
2.2.29 SVM支持向量机预测
2.2.30 TCN时间卷积神经网络预测
2.2.31 XGBoost回归预测
2.2.32 模糊预测
2.2.33 奇异谱分析方法SSA时间序列预测
2.3 机器学习和深度学习实际应用预测
CPI指数预测、PM2.5浓度预测、SOC预测、财务预警预测、产量预测、车位预测、虫情预测、带钢厚度预测、电池健康状态预测、电力负荷预测、房价预测、腐蚀率预测、故障诊断预测、光伏功率预测、轨迹预测、航空发动机寿命预测、汇率预测、混凝土强度预测、加热炉炉温预测、价格预测、交通流预测、居民消费指数预测、空气质量预测、粮食温度预测、气温预测、清水值预测、失业率预测、用电量预测、运输量预测、制造业采购经理指数预测
3 图像处理方面
3.1 图像边缘检测
3.2 图像处理
3.3 图像分割
3.4 图像分类
3.5 图像跟踪
3.6 图像加密解密
3.7 图像检索
3.8 图像配准
3.9 图像拼接
3.10 图像评价
3.11 图像去噪
3.12 图像融合
3.13 图像识别
3.13.1 表盘识别
3.13.2 车道线识别
3.13.3 车辆计数
3.13.4 车辆识别
3.13.5 车牌识别
3.13.6 车位识别
3.13.7 尺寸检测
3.13.8 答题卡识别
3.13.9 电器识别
3.13.10 跌倒检测
3.13.11 动物识别
3.13.12 二维码识别
3.13.13 发票识别
3.13.14 服装识别
3.13.15 汉字识别
3.13.16 红绿灯识别
3.13.17 虹膜识别
3.13.18 火灾检测
3.13.19 疾病分类
3.13.20 交通标志识别
3.13.21 卡号识别
3.13.22 口罩识别
3.13.23 裂缝识别
3.13.24 目标跟踪
3.13.25 疲劳检测
3.13.26 旗帜识别
3.13.27 青草识别
3.13.28 人脸识别
3.13.29 人民币识别
3.13.30 身份证识别
3.13.31 手势识别
3.13.32 数字字母识别
3.13.33 手掌识别
3.13.34 树叶识别
3.13.35 水果识别
3.13.36 条形码识别
3.13.37 温度检测
3.13.38 瑕疵检测
3.13.39 芯片检测
3.13.40 行为识别
3.13.41 验证码识别
3.13.42 药材识别
3.13.43 硬币识别
3.13.44 邮政编码识别
3.13.45 纸牌识别
3.13.46 指纹识别
3.14 图像修复
3.15 图像压缩
3.16 图像隐写
3.17 图像增强
3.18 图像重建
4 路径规划方面
4.1 旅行商问题(TSP)
4.1.1 单旅行商问题(TSP)
4.1.2 多旅行商问题(MTSP)
4.2 车辆路径问题(VRP)
4.2.1 车辆路径问题(VRP)
4.2.2 带容量的车辆路径问题(CVRP)
4.2.3 带容量+时间窗+距离车辆路径问题(DCTWVRP)
4.2.4 带容量+距离车辆路径问题(DCVRP)
4.2.5 带距离的车辆路径问题(DVRP)
4.2.6 带充电站+时间窗车辆路径问题(ETWVRP)
4.2.3 带多种容量的车辆路径问题(MCVRP)
4.2.4 带距离的多车辆路径问题(MDVRP)
4.2.5 同时取送货的车辆路径问题(SDVRP)
4.2.6 带时间窗+容量的车辆路径问题(TWCVRP)
4.2.6 带时间窗的车辆路径问题(TWVRP)
4.3 多式联运运输问题
4.4 机器人路径规划
4.4.1 避障路径规划
4.4.2 迷宫路径规划
4.4.3 栅格地图路径规划
4.5 配送路径规划
4.5.1 冷链配送路径规划
4.5.2 外卖配送路径规划
4.5.3 口罩配送路径规划
4.5.4 药品配送路径规划
4.5.5 含充电站配送路径规划
4.5.6 连锁超市配送路径规划
4.5.7 车辆协同无人机配送路径规划
4.6 无人机路径规划
4.6.1 飞行器仿真
4.6.2 无人机飞行作业
4.6.3 无人机轨迹跟踪
4.6.4 无人机集群仿真
4.6.5 无人机三维路径规划
4.6.6 无人机编队
4.6.7 无人机协同任务
4.6.8 无人机任务分配
5 语音处理
5.1 语音情感识别
5.2 声源定位
5.3 特征提取
5.4 语音编码
5.5 语音处理
5.6 语音分离
5.7 语音分析
5.8 语音合成
5.9 语音加密
5.10 语音去噪
5.11 语音识别
5.12 语音压缩
5.13 语音隐藏
6 元胞自动机方面
6.1 元胞自动机病毒仿真
6.2 元胞自动机城市规划
6.3 元胞自动机交通流
6.4 元胞自动机气体
6.5 元胞自动机人员疏散
6.6 元胞自动机森林火灾
6.7 元胞自动机生命游戏
7 信号处理方面
7.1 故障信号诊断分析
7.1.1 齿轮损伤识别
7.1.2 异步电机转子断条故障诊断
7.1.3 滚动体内外圈故障诊断分析
7.1.4 电机故障诊断分析
7.1.5 轴承故障诊断分析
7.1.6 齿轮箱故障诊断分析
7.1.7 三相逆变器故障诊断分析
7.1.8 柴油机故障诊断
7.2 雷达通信
7.2.1 FMCW仿真
7.2.2 GPS抗干扰
7.2.3 雷达LFM
7.2.4 雷达MIMO
7.2.5 雷达测角
7.2.6 雷达成像
7.2.7 雷达定位
7.2.8 雷达回波
7.2.9 雷达检测
7.2.10 雷达数字信号处理
7.2.11 雷达通信
7.2.12 雷达相控阵
7.2.13 雷达信号分析
7.2.14 雷达预警
7.2.15 雷达脉冲压缩
7.2.16 天线方向图
7.2.17 雷达杂波仿真
7.3 生物电信号
7.3.1 肌电信号EMG
7.3.2 脑电信号EEG
7.3.3 心电信号ECG
7.3.4 心脏仿真
7.4 通信系统
7.4.1 DOA估计
7.4.2 LEACH协议
7.4.3 编码译码
7.4.4 变分模态分解
7.4.5 超宽带仿真
7.4.6 多径衰落仿真
7.4.7 蜂窝网络
7.4.8 管道泄漏
7.4.9 经验模态分解
7.4.10 滤波器设计
7.4.11 模拟信号传输
7.4.12 模拟信号调制
7.4.13 数字基带信号
7.4.14 数字信道
7.4.15 数字信号处理
7.4.16 数字信号传输
7.4.17 数字信号去噪
7.4.18 水声通信
7.4.19 通信仿真
7.4.20 无线传输
7.4.21 误码率仿真
7.4.22 现代通信
7.4.23 信道估计
7.4.24 信号检测
7.4.25 信号融合
7.4.26 信号识别
7.4.27 压缩感知
7.4.28 噪声仿真
7.4.29 噪声干扰
7.5 无人机通信
7.6 无线传感器定位及布局方面
7.6.1 WSN定位
7.6.2 高度预估
7.6.3 滤波跟踪
7.6.4 目标定位
7.6.4.1 Dv-Hop定位
7.6.4.2 RSSI定位
7.6.4.3 智能算法优化定位
7.6.5 组合导航
8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置