💥💥💞💞欢迎来到Matlab仿真科研站博客之家💞💞💥💥
✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。
🍎个人主页:Matlab仿真科研站博客之家
🏆代码获取方式:
💥扫描文章底部QQ二维码💥
⛳️座右铭:行百里者,半于九十;路漫漫其修远兮,吾将上下而求索。
⛄更多Matlab图像处理(仿真科研站版)仿真内容点击👇
Matlab图像处理(仿真科研站版)
⛄一、KL变换人脸识别简介
人脸识别是指基于己知的人脸样本集,利用图像处理和模式识别的技术从静态或动态场景中,识别或验证一个或多个人脸。人脸识别技术跨越了图像处理、模式识别、计算机视觉、生物学、神经生理学和神经网络等诸多学科,同指纹识别、虹膜识别等同属于生物特征识别技术范畴,但是人脸识别同这些生物识别技术相比,更具有采集方便,隐蔽性好等特点,所以在安防监控领域、多媒体检索以及人机交互方面有着广泛地应用。
人脸识别的研究内容包括以下三个方面。(1)人脸检测:研究如何从各种不同的背景中检测出人脸的存在并确定其位置,这一任务主要受光照、噪声、头部倾斜度以及各种遮挡的影响。(2)特征提取:确定表示检测出的人脸和数据库中的己知人脸的描述方式。通常的表示方法包括几何特征(如欧式距离,曲率,角度等),代数特征(如矩阵特征矢量),固定特征模板,特征脸,云纹图等。(3)人脸识别:将待识别的人脸与数据库中的已知人脸进行比较,得出相关信息,这一过程的核心是选择适当的人脸表示方式和分类策略。一个典型的人脸识别系统一般由数据获取、预处理、特征提取、分类决策及分类器设计五部分组成。本系统采用oRL人脸数据库中已经经过预处理的人脸进行特征提取、分类决策和分类器设计。OR L数据库中有40个人, 每人10张人脸图像,共400个人脸图像,图1为该数据库随机抽取的3个人的部分人脸图像。本系统的特征提取方法采用基于奇异值分解(Singular Value Decomposition) 的KL(Karhunen Lo eve) 变换, 由原始人脸图像中提取特征向量; 分类器设计在训练过程中完成,利用已知人脸图像样本进行训练,确定KL变换的具体参数;分类决策即识别过程,采用最小距离法对未知的人脸样本进行分类决策。
1 基于奇异值分解的KL变换
KL变换又称主成分分析,是图像压缩的一种最优正交变换。高维的图像空间经过KL变换后得到一组新的正交基,保留其中一部分重要的正交基,由这些基可以组成低维线性空间。如果假设人脸图像在这些低维线性空间的投影具有可分离性,就可以将这些投影作为识别的特征向量,该特征向量又称为对“特征脸”的投影。
假设对向量集合{xi},i=1,2…中的每一个x用确定的完备正交归一向量系展开,可得:
假设我们只用有限项来估计x, 即
相应特征值。
当取与矩阵w的d个最大特征值对应的d个特征向量来展开x时,其截断均方误差和在所有其他正交坐标系情况下用d个坐标展开x时所引起的均方误差相比为最小。这d个特征向量所组成的正交坐标系称作x所在的D维空间的d维KL变换坐标系,x在KL坐标系上的展开系数向量称作x的KL变换。
其中, Xi为第i个训练样本的图像向量, u为训练样本集的平均向量, M为训练样本的总数, 。则由奇异值分解法很容易求出S的特征值及相应的正交归一特征向量ui。
图3 系统训练流程图与识别流程图
将特征值由大到小排序:,其对应的图像的特征向量分别为。这样每一幅人脸图像都可以投影到由这组特征向量张成的子空间中,每一个特征向量所对应的图像也称为图像的“特征脸”。任何一幅图像都可以表示为这组“特征脸”的线性组合,其加权系数即是KL变换的展开系数。
2 人脸分类器的设计
本系统采用最小距离法作为分类器的设计方法。
现有40个类别的待识别人脸问题,每个类别分别用来表示,每个有标明类别的已知样本5个。我们可以规定wi;类的
判别函数为:
也就是说对未知样本x,我们只要比较x与200个已知类别的样本之间的欧氏距离,并决策x与离它最近的样本同类。
整个系统的训练及识别过程流程图,如图3所示。
3 人脸识别结果分析及总结
实验所用的OR L人脸数据库中有40个人, 每人10张人脸图像, 共400个人脸图像。选取每人的5张人脸图像为已知训练样本,而其余的5张人脸为待识别的样本。训练时选取的特征向量数n分别为10、20、30、40、50、60、70和80。则经过KL变换后表示人脸图像的低维子空间Y的大小分别为10×200、20×200、30×200、40×200、50×200、60×200、70×200和80×200,而原来的图像空间大小为10304×200。可见随着特征向量数n的不同,即KL变换系数的维数不同,经KL变换后图像数据得到了有效的降维。根据降维的程度不同,所得到的识别率也有所不同,如表1所示。由表1分析得知,随着特征向量数的增加,变换后的矩阵Y保留原人脸图像的信息也增加,当n小于等于60时,识别率随着n的增加而增加。但是当n大于60后,不管n怎样增加,识别率都不会再增加。可见基于KL变换的人脸识别系统识别率的最大极限值为95%。错误识别的原因可能是由于线性分类器固有的缺陷照成的。
如果想进一步提高人脸识别率,可以考虑改进分类决策的方法。本系统采用的最小距离分类法属于线性的分类器,而利用神经网络这类学习能力更强的非线性分类器对高维人脸识别问题可能会有更好的解决。
备注:简介部分仅作为理论参考,与本文程序和运行结果略有出入。
⛄二、部分源代码
function varargout = renlian(varargin)
% RENLIAN MATLAB code for renlian.fig
% RENLIAN, by itself, creates a new RENLIAN or raises the existing
% singleton*.
%
% H = RENLIAN returns the handle to a new RENLIAN or the handle to
% the existing singleton*.
%
% RENLIAN(‘CALLBACK’,hObject,eventData,handles,…) calls the local
% function named CALLBACK in RENLIAN.M with the given input arguments.
%
% RENLIAN(‘Property’,‘Value’,…) creates a new RENLIAN or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before renlian_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to renlian_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE’s Tools menu. Choose “GUI allows only one
% instance to run (singleton)”.
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% Edit the above text to modify the response to help renlian
% L
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct(‘gui_Name’, mfilename, …
‘gui_Singleton’, gui_Singleton, …
‘gui_OpeningFcn’, @renlian_OpeningFcn, …
‘gui_OutputFcn’, @renlian_OutputFcn, …
‘gui_LayoutFcn’, [] , …
‘gui_Callback’, []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% — Executes just before renlian is made visible.
function renlian_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to renlian (see VARARGIN)
% Choose default command line output for renlian
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);
% UIWAIT makes renlian wait for user response (see UIRESUME)
% uiwait(handles.figure1);
% — Outputs from this function are returned to the command line.
function varargout = renlian_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
% — Executes on selection change in listbox1.
function listbox1_Callback(hObject, eventdata, handles)
str=get(handles.listbox1,‘string’);
v=get(handles.listbox1,‘value’);
a=[str{v} ‘.bmp’];
axes(handles.axes1)
imshow(a);
% hObject handle to listbox1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: contents = cellstr(get(hObject,‘String’)) returns listbox1 contents as cell array
% contents{get(hObject,‘Value’)} returns selected item from listbox1
% — Executes during object creation, after setting all properties.
function listbox1_CreateFcn(hObject, eventdata, handles)
% hObject handle to listbox1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: listbox controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,‘BackgroundColor’), get(0,‘defaultUicontrolBackgroundColor’))
set(hObject,‘BackgroundColor’,‘white’);
end
% — Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
N=75;
q=5;
x=zeros(10000,15);
for i=1:N
a=[num2str(i) ‘.bmp’];
h=imread(a);
[m n]=size(h);
x(:,i)=reshape(h,m*n,1);
end
pingjun=mean(x,2);
d=repmat(pingjun,1,N);
A=x-d;
y=A’*A;
[v u]=eig(y);
tezhengzhi=sum(u);
[tezhengzhi,xulie]=sort(tezhengzhi,2,‘descend’);
for i=1:q
tezhenglian(:,i)=Av(:,xulie(i))(tezhengzhi(i)^(-0.5));%特征脸
end
for i=1:N
P(:,i)=tezhenglian’A(:,i);
end
str=get(handles.listbox1,‘string’);
v=get(handles.listbox1,‘value’);
a=[str{v} ‘.bmp’];
z=zeros(10000,1);
h=imread(a);
[m n]=size(h);
z(:,1)=reshape(h,mn,1);
shibie=tezhenglian’*(z-pingjun);%投影
chonggou=tezhenglianshibie+pingjun;%重构
fangcha=((z-chonggou)'(z-chonggou))^0.5;
yuzhi=0;
for i=1:N
for j=i:N
zanshiyuzhi=((P(:,i)-P(:,j))'*(P(:,i)-P(:,j)))^0.5;
if zanshiyuzhi>yuzhi
yuzhi=zanshiyuzhi;
end
end
end
yuzhi=yuzhi/2;
juli=9e+009;
for i=1:N
bijiao=((shibie-P(:,i))'*(shibie-P(:,i)))^0.5;
if bijiao<juli;
juli=bijiao;
k=i;
end
end
if fangcha>=yuzhi flag=1;
elseif fangcha<yuzhi&&juli>=yuzhi flag2;
elseif fangcha<yuzhi&&juli<yuzhi flag=3;
end
if flag1
a=[ ‘0.png’];
axes(handles.axes3)
imshow(a);
set(handles.edit1,‘string’,‘未被识别,请重新采集’);
elseif flag2
a=[ ‘0.png’];
axes(handles.axes3)
imshow(a);
set(handles.edit1,‘string’,‘输入图像包含未知人脸’);
elseif flag3
if k>15
ren=rem(k-1,15)+1;
else ren=k;
end
a=[num2str(k) ‘.bmp’];
axes(handles.axes3)
imshow(a);
set(handles.edit1,‘string’,ren)
end
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
⛄三、运行结果
⛄四、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1]戴骊融,陈万米,郭盛.基于肤色模型和SURF算法的人脸识别研究[J].工业控制计算机. 2014,27(02)
3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除
🍅 仿真咨询
1 各类智能优化算法改进及应用
1.1 PID优化
1.2 VMD优化
1.3 配电网重构
1.4 三维装箱
1.5 微电网优化
1.6 优化布局
1.7 优化参数
1.8 优化成本
1.9 优化充电
1.10 优化调度
1.11 优化电价
1.12 优化发车
1.13 优化分配
1.14 优化覆盖
1.15 优化控制
1.16 优化库存
1.17 优化路由
1.18 优化设计
1.19 优化位置
1.20 优化吸波
1.21 优化选址
1.22 优化运行
1.23 优化指派
1.24 优化组合
1.25 车间调度
1.26 生产调度
1.27 经济调度
1.28 装配线调度
1.29 水库调度
1.30 货位优化
1.31 公交排班优化
1.32 集装箱船配载优化
1.33 水泵组合优化
1.34 医疗资源分配优化
1.35 可视域基站和无人机选址优化
2 机器学习和深度学习分类与预测
2.1 机器学习和深度学习分类
2.1.1 BiLSTM双向长短时记忆神经网络分类
2.1.2 BP神经网络分类
2.1.3 CNN卷积神经网络分类
2.1.4 DBN深度置信网络分类
2.1.5 DELM深度学习极限学习机分类
2.1.6 ELMAN递归神经网络分类
2.1.7 ELM极限学习机分类
2.1.8 GRNN广义回归神经网络分类
2.1.9 GRU门控循环单元分类
2.1.10 KELM混合核极限学习机分类
2.1.11 KNN分类
2.1.12 LSSVM最小二乘法支持向量机分类
2.1.13 LSTM长短时记忆网络分类
2.1.14 MLP全连接神经网络分类
2.1.15 PNN概率神经网络分类
2.1.16 RELM鲁棒极限学习机分类
2.1.17 RF随机森林分类
2.1.18 SCN随机配置网络模型分类
2.1.19 SVM支持向量机分类
2.1.20 XGBOOST分类
2.2 机器学习和深度学习预测
2.2.1 ANFIS自适应模糊神经网络预测
2.2.2 ANN人工神经网络预测
2.2.3 ARMA自回归滑动平均模型预测
2.2.4 BF粒子滤波预测
2.2.5 BiLSTM双向长短时记忆神经网络预测
2.2.6 BLS宽度学习神经网络预测
2.2.7 BP神经网络预测
2.2.8 CNN卷积神经网络预测
2.2.9 DBN深度置信网络预测
2.2.10 DELM深度学习极限学习机预测
2.2.11 DKELM回归预测
2.2.12 ELMAN递归神经网络预测
2.2.13 ELM极限学习机预测
2.2.14 ESN回声状态网络预测
2.2.15 FNN前馈神经网络预测
2.2.16 GMDN预测
2.2.17 GMM高斯混合模型预测
2.2.18 GRNN广义回归神经网络预测
2.2.19 GRU门控循环单元预测
2.2.20 KELM混合核极限学习机预测
2.2.21 LMS最小均方算法预测
2.2.22 LSSVM最小二乘法支持向量机预测
2.2.23 LSTM长短时记忆网络预测
2.2.24 RBF径向基函数神经网络预测
2.2.25 RELM鲁棒极限学习机预测
2.2.26 RF随机森林预测
2.2.27 RNN循环神经网络预测
2.2.28 RVM相关向量机预测
2.2.29 SVM支持向量机预测
2.2.30 TCN时间卷积神经网络预测
2.2.31 XGBoost回归预测
2.2.32 模糊预测
2.2.33 奇异谱分析方法SSA时间序列预测
2.3 机器学习和深度学习实际应用预测
CPI指数预测、PM2.5浓度预测、SOC预测、财务预警预测、产量预测、车位预测、虫情预测、带钢厚度预测、电池健康状态预测、电力负荷预测、房价预测、腐蚀率预测、故障诊断预测、光伏功率预测、轨迹预测、航空发动机寿命预测、汇率预测、混凝土强度预测、加热炉炉温预测、价格预测、交通流预测、居民消费指数预测、空气质量预测、粮食温度预测、气温预测、清水值预测、失业率预测、用电量预测、运输量预测、制造业采购经理指数预测
3 图像处理方面
3.1 图像边缘检测
3.2 图像处理
3.3 图像分割
3.4 图像分类
3.5 图像跟踪
3.6 图像加密解密
3.7 图像检索
3.8 图像配准
3.9 图像拼接
3.10 图像评价
3.11 图像去噪
3.12 图像融合
3.13 图像识别
3.13.1 表盘识别
3.13.2 车道线识别
3.13.3 车辆计数
3.13.4 车辆识别
3.13.5 车牌识别
3.13.6 车位识别
3.13.7 尺寸检测
3.13.8 答题卡识别
3.13.9 电器识别
3.13.10 跌倒检测
3.13.11 动物识别
3.13.12 二维码识别
3.13.13 发票识别
3.13.14 服装识别
3.13.15 汉字识别
3.13.16 红绿灯识别
3.13.17 虹膜识别
3.13.18 火灾检测
3.13.19 疾病分类
3.13.20 交通标志识别
3.13.21 卡号识别
3.13.22 口罩识别
3.13.23 裂缝识别
3.13.24 目标跟踪
3.13.25 疲劳检测
3.13.26 旗帜识别
3.13.27 青草识别
3.13.28 人脸识别
3.13.29 人民币识别
3.13.30 身份证识别
3.13.31 手势识别
3.13.32 数字字母识别
3.13.33 手掌识别
3.13.34 树叶识别
3.13.35 水果识别
3.13.36 条形码识别
3.13.37 温度检测
3.13.38 瑕疵检测
3.13.39 芯片检测
3.13.40 行为识别
3.13.41 验证码识别
3.13.42 药材识别
3.13.43 硬币识别
3.13.44 邮政编码识别
3.13.45 纸牌识别
3.13.46 指纹识别
3.14 图像修复
3.15 图像压缩
3.16 图像隐写
3.17 图像增强
3.18 图像重建
4 路径规划方面
4.1 旅行商问题(TSP)
4.1.1 单旅行商问题(TSP)
4.1.2 多旅行商问题(MTSP)
4.2 车辆路径问题(VRP)
4.2.1 车辆路径问题(VRP)
4.2.2 带容量的车辆路径问题(CVRP)
4.2.3 带容量+时间窗+距离车辆路径问题(DCTWVRP)
4.2.4 带容量+距离车辆路径问题(DCVRP)
4.2.5 带距离的车辆路径问题(DVRP)
4.2.6 带充电站+时间窗车辆路径问题(ETWVRP)
4.2.3 带多种容量的车辆路径问题(MCVRP)
4.2.4 带距离的多车辆路径问题(MDVRP)
4.2.5 同时取送货的车辆路径问题(SDVRP)
4.2.6 带时间窗+容量的车辆路径问题(TWCVRP)
4.2.6 带时间窗的车辆路径问题(TWVRP)
4.3 多式联运运输问题
4.4 机器人路径规划
4.4.1 避障路径规划
4.4.2 迷宫路径规划
4.4.3 栅格地图路径规划
4.5 配送路径规划
4.5.1 冷链配送路径规划
4.5.2 外卖配送路径规划
4.5.3 口罩配送路径规划
4.5.4 药品配送路径规划
4.5.5 含充电站配送路径规划
4.5.6 连锁超市配送路径规划
4.5.7 车辆协同无人机配送路径规划
4.6 无人机路径规划
4.6.1 飞行器仿真
4.6.2 无人机飞行作业
4.6.3 无人机轨迹跟踪
4.6.4 无人机集群仿真
4.6.5 无人机三维路径规划
4.6.6 无人机编队
4.6.7 无人机协同任务
4.6.8 无人机任务分配
5 语音处理
5.1 语音情感识别
5.2 声源定位
5.3 特征提取
5.4 语音编码
5.5 语音处理
5.6 语音分离
5.7 语音分析
5.8 语音合成
5.9 语音加密
5.10 语音去噪
5.11 语音识别
5.12 语音压缩
5.13 语音隐藏
6 元胞自动机方面
6.1 元胞自动机病毒仿真
6.2 元胞自动机城市规划
6.3 元胞自动机交通流
6.4 元胞自动机气体
6.5 元胞自动机人员疏散
6.6 元胞自动机森林火灾
6.7 元胞自动机生命游戏
7 信号处理方面
7.1 故障信号诊断分析
7.1.1 齿轮损伤识别
7.1.2 异步电机转子断条故障诊断
7.1.3 滚动体内外圈故障诊断分析
7.1.4 电机故障诊断分析
7.1.5 轴承故障诊断分析
7.1.6 齿轮箱故障诊断分析
7.1.7 三相逆变器故障诊断分析
7.1.8 柴油机故障诊断
7.2 雷达通信
7.2.1 FMCW仿真
7.2.2 GPS抗干扰
7.2.3 雷达LFM
7.2.4 雷达MIMO
7.2.5 雷达测角
7.2.6 雷达成像
7.2.7 雷达定位
7.2.8 雷达回波
7.2.9 雷达检测
7.2.10 雷达数字信号处理
7.2.11 雷达通信
7.2.12 雷达相控阵
7.2.13 雷达信号分析
7.2.14 雷达预警
7.2.15 雷达脉冲压缩
7.2.16 天线方向图
7.2.17 雷达杂波仿真
7.3 生物电信号
7.3.1 肌电信号EMG
7.3.2 脑电信号EEG
7.3.3 心电信号ECG
7.3.4 心脏仿真
7.4 通信系统
7.4.1 DOA估计
7.4.2 LEACH协议
7.4.3 编码译码
7.4.4 变分模态分解
7.4.5 超宽带仿真
7.4.6 多径衰落仿真
7.4.7 蜂窝网络
7.4.8 管道泄漏
7.4.9 经验模态分解
7.4.10 滤波器设计
7.4.11 模拟信号传输
7.4.12 模拟信号调制
7.4.13 数字基带信号
7.4.14 数字信道
7.4.15 数字信号处理
7.4.16 数字信号传输
7.4.17 数字信号去噪
7.4.18 水声通信
7.4.19 通信仿真
7.4.20 无线传输
7.4.21 误码率仿真
7.4.22 现代通信
7.4.23 信道估计
7.4.24 信号检测
7.4.25 信号融合
7.4.26 信号识别
7.4.27 压缩感知
7.4.28 噪声仿真
7.4.29 噪声干扰
7.5 无人机通信
7.6 无线传感器定位及布局方面
7.6.1 WSN定位
7.6.2 高度预估
7.6.3 滤波跟踪
7.6.4 目标定位
7.6.4.1 Dv-Hop定位
7.6.4.2 RSSI定位
7.6.4.3 智能算法优化定位
7.6.5 组合导航
8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合