【优化求解】遗传算法求解仓库货位优化问题【含Matlab源码 022期】

💥💥💞💞欢迎来到Matlab仿真科研站博客之家💞💞💥💥

✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。

🍎个人主页:Matlab仿真科研站博客之家

🏆代码获取方式:
💥扫描文章底部QQ二维码💥

⛳️座右铭:行百里者,半于九十;路漫漫其修远兮,吾将上下而求索。
在这里插入图片描述

⛄更多Matlab优化求解仿真内容点击👇
Matlab优化求解(仿真科研站版)

⛄一、遗传算法仓库货位简介(仅供参考)

1 引言
随着电力企业生产规模的不断扩大,传统模式下的仓库管理模式由于利用率较低等问题已经不能很好地胜任电力企业仓储管理的需要。自动化立体仓库又称为自动仓储,极大地提高了物流整体运行效率,在物流活动中有着举足轻重的地位。对货位进行有效分配至关重要,合理的拣选路径可以节约时间、提高效率、同时降低拣选过程中设备所消耗的能量,进而降低成本。

货位分配就是考虑货物货架的实际性质,给出入库货物分配合理储位,达到仓储利益最大化的目的。以仓储用途为标准进行区位划分,将仓库分为5大区模块;利用不同的仓库水平位置,按照货物流通速度、出入库频率高低划分区位;将仓库入料作为参数,建立数学模型用来寻取最优货位;在研究不规则空间的自动仓库系统货物分配策略的基础上,构建了货位优化的数学模型。在研究仓库信息化、现代化的过程中,引入了自动化分配的概念,将建模指标确定为货位的动态分配

本研究基于某电力企业立体仓库,将货物出入库效率、存储货物之间的相关性以及保证货架的稳定性作为优化目标进行研究,建立货位分配的优化模型,并引入多目标遗传算法对优化模型进行求解,从而能有效提高仓库作业效率。

1 自动化仓库货位分配优化
1.1 模型假设

货位分配就是考虑货物、货架的实际性质、货物出入库频率等因素,给出入库货物分配合理储位,以降低仓储作业成本,从而达到仓储利益最大化的目的。
货物入库和出库的分配主要分为两种情况:入库时的货位分配和出库时货位的选择分配。前者根据入库的货物情况选择适当数目的货位进行摆放,后者根据出库的货物情况,将不同位置的同类货物进行出库操作。仓储过程中货物的合理分配一般遵循以下几个原则:
(1)先入先出原则。同一种类型的货物必须满足先进入仓库的要先出库这一原则,这样才可以减少货物在仓库中积压的时间,并安排入库频率高的货物置于离出入库口较近的货位,从而使货物的存储更加方便,让货物出入库的效率得到普遍的提高。
(2)稳定性原则。即将货物合理均匀分配在货架上,轻物安放在货架的上层,重物放置在货架的下层,实现货架“上轻下重”,从而保证货架稳定性。
(3)相关性安放原则。若货物之间存在一定的相关性,把需要同时出库的货物将其放在相近或是相邻的货位。考虑货物自身的性质应谨慎安排货位,如特殊类型货物要放在特殊的位置并且尽量安放在一起。
根据某电力企业仓库实际情况,进行模型简化。描述如下:假设在某个仓库区域中,该仓库共有a排立体货架,且每排为b列c层。因此,位于第ak排bk层ck列的货架可表示为:(ak,bk,ck)(ak=1,2,…,a;bk=1,2,…,b;ck=1,2,…,c),坐标(0,0,0)表示仓库的入口。图1为本研究货架俯视效果图。
在这里插入图片描述
图1 货架俯视效果图
从货架俯视图中可以将货位进行优化,针对此问题作以下假设:
(1)已知每种零件存放的种类,并且相同体积的容器其质量分布均匀;
(2)每种零部件的周转率已知;
(3)一种零部件对应一个货位;
(4)立体仓库采用单端出入库方式;
(5)每种货位单元格的长宽高以及巷道宽度均为定值l0;
(6)仅考虑拣选时间,不考虑零部件存取耗费的时间。

1.2 参数定义
根据假设,(a,b,c):货架共有a排、b列、c层;(x,y,z):货物在第x排,第y列,第z层的坐标;Vx:堆垛机在巷道上取送相应货物水平方向的平均速度;Vy:堆垛机沿另一水平方向的平均移动速度;Vz:堆垛机沿垂直方向的平均移动速度;l0:长度、宽度、高度相同的货架单元格;n:所有货物共n类;k:货位上存放的是第k类货品;pk:第k类货品的周转率;mk:第k类货品的质量;nxyzk:k在每个货位的取值不定;nxyz:存储在(x,y,z)货位坐标上的第k类货物的数量。

2 多目标优化的数学模型
2.1 出入库周转效率分析

在仓储管理的时候,必须要对每一个入库的货品进行严格地检查,执行严格的出入库管理。实际货物物流的过程中,每天都会有大量的货物进出仓库,因此合理利用好仓库空间,协调好管理人员之间的关系,提升货物出入库效率是仓储管理中急需解决的一个问题。想要提升货物出入库的效率,首先就要把时间作为一个重要的考虑因素:将货物出入库的实际时间作为衡量标准,推算出货物出入库位置合理的距离公式。

在现代的仓储管理中,货品上架和下架基本都是由堆垛机完成的,而堆垛机在竖直方向和水平方向上移动速度是不同的。对于大部分仓库而言,堆垛机的速度大致是差不多的,尽管堆垛机在实际独立取送货物中有着x轴和y轴两个不同的速度,但是它们的平均速度大致相同。假设(xk,yk,zk)是货位的坐标,用k表示摆放在货位的第k类货品,那么X,Y,Z方向上的移动平均速度表示为Vx,Vy,Vz,l0为货架单元格长宽高,并且都是已知的常量,假设堆垛机3个方向的平均速度Vx、Vy、Vz是不变的,可以推导出提高出入库效率模型公式:

2.2 出入库稳定性分析
重心低的物体具有较好的稳定性,为了降低货架的重心,将货品按照“上轻下重”的原则放置,以此来增强货架的稳定性。将货架的重心设置为第二个计算因子,将货架的重心降到最低就是货物摆放所要达到的最优目标。

根据排列层的样式,首先设计仓库货架布局,计算每排每列货架的重心。为了求取整个货架重心的最优解,首先需将每排的所有列进行加权,然后再将所有排整体求和。对该目标函数进行推导,得到货架中心。整个仓库的货架稳定性函数模型如下:

2.3 货品种类分析
要实现仓储管理的现代化,就必须使仓库在有限的空间内放置更多的货品,在探求货品存放最优模式时,不仅要考虑布局仓库货位对空间的占用,还要注意货品摆放的序列。根据仓库货位放置的货品来确定第k类货品(ak,bk,ck)中心坐标位置。根据不同实际情形,建立单独的目标函数模型。联立后如式(3)所示:

式中,每个货位单元格的长度l0,第k类(k∈[1,n])货品的周转率pk,第k类货品的质量mk,货位分类存放时第k类货品的中心点坐标为(ak,bk,ck),该坐标第k类货品的存放数nabck。

3 货位优化的多目标遗传算法实现
本文基于多目标遗传算法建立一系列效用函数与目标函数之间的相关联系,借助效用函数关联多个目标,在效用函数的协调下,使得多目标优化向单目标优化转化,便于最优化运算求解。对于货物优化问题,可将货物坐标标识为基因,染色体即为货物坐标的排序序列,多条染色体可组成一组有效种群解,从而在种群基础上搜寻多目标规划问题的最优解。

3.1 货位算法编码
根据实际仓库情况,货架的排和列数小于32,层数小于8。对货位的编码:货位编号由6位数组成,编号是从010101到323208,仓库货位前面两位编号表示排,中间两位编号表示列,最后两位编号表示层,这种编号前两位和中间两位阿拉伯数字不能超过32,最后两位不能超过8。编号编码表如表1所示。
表1 货位编号
在这里插入图片描述
表1 货位编号
实际操作中,需要按照不同的编码方法进行编码,同时又想把不同编码方法得到的参数结果连接在一起,则常要在GA编码方式中利用参数级联编码方式,目的是在不改变原来编码的基础上依次将它们按照顺序连在一起,从而得到整个参数的编码。综上分析采用5∶5∶3编码方式对参数解码。解码过程顾名思义则将其按照5∶5∶3这样比例进行拆分开来,例如二进制编码串为X:1000101111100,可以将二进制编码串拆分成3个子串,并分别将3个子串进行解码:10001转换为十进制是X1=16+1=17;01111转换为十进制是X2=8+4+2+1=15;100转换为十进制是X3=04。因此,可以求出二进制编码解码为(171504)。

3.2 初始化种群
在进行货位优化方面,首先考虑初始种群的设定,因此在整个仓库中,货位和货物是相互对应的关系。一旦货位确定下来,货物的位置也就相应的确定下来。在用二进制编码时,就不用担心生成的是不是0或1,仓库中总会使货物与货位有着匹配的关系,然后将每个产生的货位编号连接起来即可构成一个初始个体。为了更加合理有效地对货位进行分配,在盘点一些短期或长期储存的货物时要尽可能的采用货位优化方式,更要在货物刚要入库上架的时候运用进来。

⛄二、部分源代码

%%%% 遗传算法优化仓库货位优化
% ======================= ======================

clc
clear
close all
%% 货架
L = 2; % 纵向通道宽度
L0 = 1.5; % 货架宽度
a = 8; % 每个区域有10列货架
b = 9; % 每个货架有10个储位
c = 8; % 层数
data = xlsread(‘新数据.xls’);
G = data(:,2:4); % 货物位置
R = data(:,5); % 周转率
Q = data(:,6); % 质量
Vx = 1; % 水平运输速度,单位:m/s
Vy = 1.2;
Vz = 0.6; % 垂直运输速度,单位:m/s

%% 遗传算法参数
NP = 200; % 种群大小
maxgen = 1500; % 最大进化代数
Pc = 0.9; % 交叉概率
Pm = 0.1; % 变异概率
Gap = 0.9; % 代沟(Generation gap)

%%
figure(1)
drawCol(a,b,c,L,L0)
GoodsNum = size(G,1);
for i = 1 : GoodsNum
drawGood(G(i, 😃,L,L0,R(i))
end

⛄三、运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]叶可欣,周靖.基于遗传算法的电力企业仓库货位分配优化[J].水电站机电技术. 2021,44(04)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

1.1 PID优化
1.2 VMD优化
1.3 配电网重构
1.4 三维装箱
1.5 微电网优化
1.6 优化布局
1.7 优化参数
1.8 优化成本
1.9 优化充电
1.10 优化调度
1.11 优化电价
1.12 优化发车
1.13 优化分配
1.14 优化覆盖
1.15 优化控制
1.16 优化库存
1.17 优化路由
1.18 优化设计
1.19 优化位置
1.20 优化吸波
1.21 优化选址
1.22 优化运行
1.23 优化指派
1.24 优化组合
1.25 车间调度
1.26 生产调度
1.27 经济调度
1.28 装配线调度
1.29 水库调度
1.30 货位优化
1.31 公交排班优化
1.32 集装箱船配载优化
1.33 水泵组合优化
1.34 医疗资源分配优化
1.35 可视域基站和无人机选址优化

2 机器学习和深度学习分类与预测
2.1 机器学习和深度学习分类
2.1.1 BiLSTM双向长短时记忆神经网络分类
2.1.2 BP神经网络分类
2.1.3 CNN卷积神经网络分类
2.1.4 DBN深度置信网络分类
2.1.5 DELM深度学习极限学习机分类
2.1.6 ELMAN递归神经网络分类
2.1.7 ELM极限学习机分类
2.1.8 GRNN广义回归神经网络分类
2.1.9 GRU门控循环单元分类
2.1.10 KELM混合核极限学习机分类
2.1.11 KNN分类
2.1.12 LSSVM最小二乘法支持向量机分类
2.1.13 LSTM长短时记忆网络分类
2.1.14 MLP全连接神经网络分类
2.1.15 PNN概率神经网络分类
2.1.16 RELM鲁棒极限学习机分类
2.1.17 RF随机森林分类
2.1.18 SCN随机配置网络模型分类
2.1.19 SVM支持向量机分类
2.1.20 XGBOOST分类

2.2 机器学习和深度学习预测
2.2.1 ANFIS自适应模糊神经网络预测
2.2.2 ANN人工神经网络预测
2.2.3 ARMA自回归滑动平均模型预测
2.2.4 BF粒子滤波预测
2.2.5 BiLSTM双向长短时记忆神经网络预测
2.2.6 BLS宽度学习神经网络预测
2.2.7 BP神经网络预测
2.2.8 CNN卷积神经网络预测
2.2.9 DBN深度置信网络预测
2.2.10 DELM深度学习极限学习机预测
2.2.11 DKELM回归预测
2.2.12 ELMAN递归神经网络预测
2.2.13 ELM极限学习机预测
2.2.14 ESN回声状态网络预测
2.2.15 FNN前馈神经网络预测
2.2.16 GMDN预测
2.2.17 GMM高斯混合模型预测
2.2.18 GRNN广义回归神经网络预测
2.2.19 GRU门控循环单元预测
2.2.20 KELM混合核极限学习机预测
2.2.21 LMS最小均方算法预测
2.2.22 LSSVM最小二乘法支持向量机预测
2.2.23 LSTM长短时记忆网络预测
2.2.24 RBF径向基函数神经网络预测
2.2.25 RELM鲁棒极限学习机预测
2.2.26 RF随机森林预测
2.2.27 RNN循环神经网络预测
2.2.28 RVM相关向量机预测
2.2.29 SVM支持向量机预测
2.2.30 TCN时间卷积神经网络预测
2.2.31 XGBoost回归预测
2.2.32 模糊预测
2.2.33 奇异谱分析方法SSA时间序列预测

2.3 机器学习和深度学习实际应用预测
CPI指数预测、PM2.5浓度预测、SOC预测、财务预警预测、产量预测、车位预测、虫情预测、带钢厚度预测、电池健康状态预测、电力负荷预测、房价预测、腐蚀率预测、故障诊断预测、光伏功率预测、轨迹预测、航空发动机寿命预测、汇率预测、混凝土强度预测、加热炉炉温预测、价格预测、交通流预测、居民消费指数预测、空气质量预测、粮食温度预测、气温预测、清水值预测、失业率预测、用电量预测、运输量预测、制造业采购经理指数预测

3 图像处理方面
3.1 图像边缘检测
3.2 图像处理
3.3 图像分割
3.4 图像分类
3.5 图像跟踪
3.6 图像加密解密
3.7 图像检索
3.8 图像配准
3.9 图像拼接
3.10 图像评价
3.11 图像去噪
3.12 图像融合
3.13 图像识别
3.13.1 表盘识别
3.13.2 车道线识别
3.13.3 车辆计数
3.13.4 车辆识别
3.13.5 车牌识别
3.13.6 车位识别
3.13.7 尺寸检测
3.13.8 答题卡识别
3.13.9 电器识别
3.13.10 跌倒检测
3.13.11 动物识别
3.13.12 二维码识别
3.13.13 发票识别
3.13.14 服装识别
3.13.15 汉字识别
3.13.16 红绿灯识别
3.13.17 虹膜识别
3.13.18 火灾检测
3.13.19 疾病分类
3.13.20 交通标志识别
3.13.21 卡号识别
3.13.22 口罩识别
3.13.23 裂缝识别
3.13.24 目标跟踪
3.13.25 疲劳检测
3.13.26 旗帜识别
3.13.27 青草识别
3.13.28 人脸识别
3.13.29 人民币识别
3.13.30 身份证识别
3.13.31 手势识别
3.13.32 数字字母识别
3.13.33 手掌识别
3.13.34 树叶识别
3.13.35 水果识别
3.13.36 条形码识别
3.13.37 温度检测
3.13.38 瑕疵检测
3.13.39 芯片检测
3.13.40 行为识别
3.13.41 验证码识别
3.13.42 药材识别
3.13.43 硬币识别
3.13.44 邮政编码识别
3.13.45 纸牌识别
3.13.46 指纹识别

3.14 图像修复
3.15 图像压缩
3.16 图像隐写
3.17 图像增强
3.18 图像重建

4 路径规划方面
4.1 旅行商问题(TSP)
4.1.1 单旅行商问题(TSP)
4.1.2 多旅行商问题(MTSP)
4.2 车辆路径问题(VRP)
4.2.1 车辆路径问题(VRP)
4.2.2 带容量的车辆路径问题(CVRP)
4.2.3 带容量+时间窗+距离车辆路径问题(DCTWVRP)
4.2.4 带容量+距离车辆路径问题(DCVRP)
4.2.5 带距离的车辆路径问题(DVRP)
4.2.6 带充电站+时间窗车辆路径问题(ETWVRP)
4.2.3 带多种容量的车辆路径问题(MCVRP)
4.2.4 带距离的多车辆路径问题(MDVRP)
4.2.5 同时取送货的车辆路径问题(SDVRP)
4.2.6 带时间窗+容量的车辆路径问题(TWCVRP)
4.2.6 带时间窗的车辆路径问题(TWVRP)
4.3 多式联运运输问题

4.4 机器人路径规划
4.4.1 避障路径规划
4.4.2 迷宫路径规划
4.4.3 栅格地图路径规划

4.5 配送路径规划
4.5.1 冷链配送路径规划
4.5.2 外卖配送路径规划
4.5.3 口罩配送路径规划
4.5.4 药品配送路径规划
4.5.5 含充电站配送路径规划
4.5.6 连锁超市配送路径规划
4.5.7 车辆协同无人机配送路径规划

4.6 无人机路径规划
4.6.1 飞行器仿真
4.6.2 无人机飞行作业
4.6.3 无人机轨迹跟踪
4.6.4 无人机集群仿真
4.6.5 无人机三维路径规划
4.6.6 无人机编队
4.6.7 无人机协同任务
4.6.8 无人机任务分配

5 语音处理
5.1 语音情感识别
5.2 声源定位
5.3 特征提取
5.4 语音编码
5.5 语音处理
5.6 语音分离
5.7 语音分析
5.8 语音合成
5.9 语音加密
5.10 语音去噪
5.11 语音识别
5.12 语音压缩
5.13 语音隐藏

6 元胞自动机方面
6.1 元胞自动机病毒仿真
6.2 元胞自动机城市规划
6.3 元胞自动机交通流
6.4 元胞自动机气体
6.5 元胞自动机人员疏散
6.6 元胞自动机森林火灾
6.7 元胞自动机生命游戏

7 信号处理方面
7.1 故障信号诊断分析
7.1.1 齿轮损伤识别
7.1.2 异步电机转子断条故障诊断
7.1.3 滚动体内外圈故障诊断分析
7.1.4 电机故障诊断分析
7.1.5 轴承故障诊断分析
7.1.6 齿轮箱故障诊断分析
7.1.7 三相逆变器故障诊断分析
7.1.8 柴油机故障诊断

7.2 雷达通信
7.2.1 FMCW仿真
7.2.2 GPS抗干扰
7.2.3 雷达LFM
7.2.4 雷达MIMO
7.2.5 雷达测角
7.2.6 雷达成像
7.2.7 雷达定位
7.2.8 雷达回波
7.2.9 雷达检测
7.2.10 雷达数字信号处理
7.2.11 雷达通信
7.2.12 雷达相控阵
7.2.13 雷达信号分析
7.2.14 雷达预警
7.2.15 雷达脉冲压缩
7.2.16 天线方向图
7.2.17 雷达杂波仿真

7.3 生物电信号
7.3.1 肌电信号EMG
7.3.2 脑电信号EEG
7.3.3 心电信号ECG
7.3.4 心脏仿真

7.4 通信系统
7.4.1 DOA估计
7.4.2 LEACH协议
7.4.3 编码译码
7.4.4 变分模态分解
7.4.5 超宽带仿真
7.4.6 多径衰落仿真
7.4.7 蜂窝网络
7.4.8 管道泄漏
7.4.9 经验模态分解
7.4.10 滤波器设计
7.4.11 模拟信号传输
7.4.12 模拟信号调制
7.4.13 数字基带信号
7.4.14 数字信道
7.4.15 数字信号处理
7.4.16 数字信号传输
7.4.17 数字信号去噪
7.4.18 水声通信
7.4.19 通信仿真
7.4.20 无线传输
7.4.21 误码率仿真
7.4.22 现代通信
7.4.23 信道估计
7.4.24 信号检测
7.4.25 信号融合
7.4.26 信号识别
7.4.27 压缩感知
7.4.28 噪声仿真
7.4.29 噪声干扰

7.5 无人机通信

7.6 无线传感器定位及布局方面
7.6.1 WSN定位
7.6.2 高度预估
7.6.3 滤波跟踪
7.6.4 目标定位
7.6.4.1 Dv-Hop定位
7.6.4.2 RSSI定位
7.6.4.3 智能算法优化定位
7.6.5 组合导航

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值