【语音隐写】DWT音频数字水印【含 GUI Matlab源码 712期】

💥💥💞💞欢迎来到Matlab仿真科研站博客之家💞💞💥💥

✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。

🍎个人主页:Matlab仿真科研站博客之家

🏆代码获取方式:
💥扫描文章底部QQ二维码💥

⛳️座右铭:行百里者,半于九十;路漫漫其修远兮,吾将上下而求索。
在这里插入图片描述

⛄更多Matlab语音处理(仿真科研站版)仿真内容点击👇
Matlab语音处理(仿真科研站版)

⛄一、离散小波变换的音频信号数字水印技术简介

0 引言
近年来, 数字水印技术的作用越来越重要。数字水印技术是将一些标识信息直接嵌入数字载体当中, 或间接表示在信号载体中, 且不影响原载体的使用价值。通过隐藏在载体中的这些信息, 可以判断信息是否被篡改, 具有防伪溯源、保护信息安全、版权保护等作用。对于广播转播台站而言, 是广播音频的中转站, 在广播信号发送至千家万户之前务必保证信号的安全可靠, 但现在的大部分台站只是利用人耳的判断, 以及不同信源之间的比较, 具有较大的局限性。若利用数字水印的特性, 应用于广播节目中可以有效地防止信号插播, 可靠地保护信号安全, 保障广播的安全播出。

1 音频数字水印技术分类
根据数字水印在音频信号中的处理技术, 可将数字水印分为时域、变换域、压缩域数字水印。

1.1 时域数字水印
在时域数字水印技术中, 直接将水印信息嵌入至音频信号中, 通常会选择隐藏在信号不重要部位, 以保证其嵌入水印不影响原音频信号的监听效果。时域水印技术的实现较为容易且运算量小, 简单直接, 但是鲁棒性差, 容易被破解, 抵抗力较差。

1.2 变换域数字水印
在变换域数字水印中, 音频信号需经过时域至变换域的转换, 通常的变换域有离散余弦变换 (DCT, Discrete Cosine Transform) 、离散傅立叶变换 (DFT, Discrete Fourier transform) 、离散小波变换 (DWT, Discrete Wavelet Transform) 等。在变换域中嵌入水印信息, 通过反变换得到嵌入水印的音频时域信号。变换域水印技术较时域水印技术复杂, 但变换域嵌入的水印信息较时域而言, 不可见性更强, 隐蔽性更好, 鲁棒性更好。本文的研究主要基于DWT的音频信号的水印信息的嵌入与提取。

1.3 压缩域数字水印
在时域和变换域的水印技术, 都是直接将水印信号嵌入未压缩的音频格式中, 但是通常在音频信号的传输或存储中需要对音频信号进行压缩编码 (例如WMA、MP3等) , 因此压缩域数字水印也是水印技术也具有较大的实用价值。压缩域数字水印技术大致可分为三类: (1) 在非压缩域嵌入水印, 将音频信号与水印信息一起压缩; (2) 在压缩域中, 直接将水印信息嵌入压缩的音频信号中; (3) 将压缩后的信号进行解压缩, 然后嵌入水印信息, 最后将水印信息和解压后的音频信号一起压缩。总的来说, 压缩域水印技术的编解码系统过于复杂, 受压缩编码格式限制大, 压缩后的音频信号已经去除了冗余, 因此加入水印的难度大, 压缩域水印技术有待进一步研究。

2 基于DWT的音频水印算法
2.1 水印嵌入
本文研究的音频水印算法是基于离散小波变换 (DWT) , 音频信号通过DWT变换, 在变换域中嵌入水印信息, 再经过逆变换 (IDWT) 从而得到嵌入水印的音频信号。水印嵌入原理框图如图1所示。

假定水印为M1×M2的二维图像bw, 由于音频信号通常为一维向量, 故水印信息在嵌入音频信号之前需要将二维降至一维向量w, 即M=M1×M2。通常我们也可以将图像进行打乱加密, 增强水印隐蔽性。

假定语音信号为s, 长度为N, 则s={s1, s2, s3, …, sN}由于语音信号较长在处理中一般需要进行分段, 每段长度设为N1, 故该语音信号分为K=fix (N/N1) 段进行处理, 每段语音均嵌入一个水印信息。

小波变换是为了解决傅立叶变换的不足而提出的一种分析变换, 傅立叶变换的基函数是铺满整个时域的正弦信号, 对于突变信号以及变化的频率成分信息均不能较准确地表示。而小波变换是时间和频率的局部变换, 更能准确地表示音频信号的频域特征, 常用的小波基有Haar小波、Daubechies (db N) 小波、Marr小波等。本文采用的小波基是Haar小波, 它是支撑域在t∈[0, 1]范围内的矩形波, 定义如下:
在这里插入图片描述
图1 音频信号水印嵌入原理框图
在这里插入图片描述
图2 音频信号水印提取原理框图
在这里插入图片描述
取定Haar小波基后, 则语音信号s可以表示为:
在这里插入图片描述
其中Cj, k为离散小波系数, 将音频信号分解为低频的近似部分和高频的细节部分, 我们在水印信息的嵌入处理中, 主要针对代表低频近似部分的系数向量处理, 即将水印信号放入低频近似部分, 高频细节部分不变, 以保证语音质量基本不变。由于嵌入的水印为二值图像, 因此如果水印信息的值为1, 则将对应的低频系数增大, 相反如果值为0, 则将对应的低频系数降低。在DWT域嵌入水印信息后, 然后通过IDWT变换, 将语音信号变换成时域信号。

2.2 水印提取
为了保证信息安全, 在发送端发送嵌入水印的音频信号, 而在接收端为了确定音频信息的准确性, 我们通常需要提取水印以确保来源的真实性, 因此水印的提取技术也尤为重要。在水印提取过程中, 需要原始音频信号与嵌入水印的音频信号同时进行DWT, 再将两者参数进行分析比较提取出水印信息。水印提取原理框图如图2所示。

在前面所述的水印嵌入过程中, 将水印信息嵌入高频的细节部分, 因此在提取水印过程中, 我们也只需比较原始语音信号S的低频小波系数向量c A与嵌入水印的音频信号s1的低频小波系数向量c A1作比较, 若c A1>c A, 则水印信息为1;反之则为0, 再通过向量平均, 如此得到水印信息的一维向量, 最后通过升维得到二值图像。

⛄二、部分源代码

function varargout = main(varargin)
% MAIN MATLAB code for main.fig
% MAIN, by itself, creates a new MAIN or raises the existing
% singleton*.
%
% H = MAIN returns the handle to a new MAIN or the handle to
% the existing singleton*.
%
% MAIN(‘CALLBACK’,hObject,eventData,handles,…) calls the local
% function named CALLBACK in MAIN.M with the given input arguments.
%
% MAIN(‘Property’,‘Value’,…) creates a new MAIN or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before main_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to main_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE’s Tools menu. Choose “GUI allows only one
% instance to run (singleton)”.
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help main

% Last Modified by GUIDE v2.5 05-Apr-2021 22:33:40

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct(‘gui_Name’, mfilename, …
‘gui_Singleton’, gui_Singleton, …
‘gui_OpeningFcn’, @main_OpeningFcn, …
‘gui_OutputFcn’, @main_OutputFcn, …
‘gui_LayoutFcn’, [] , …
‘gui_Callback’, []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% — Executes just before main is made visible.
function main_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to main (see VARARGIN)

% Choose default command line output for main
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes main wait for user response (see UIRESUME)
% uiwait(handles.figure1);

% — Outputs from this function are returned to the command line.
function varargout = main_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% — Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
%% 选择音频
[file1,pathname]=uigetfile(‘.wav’,‘请选择要识别的样本’);%跳出对话框
fname=fullfile(pathname,file1);
[X,fs,bits]=wavread(fname); %读入音频文件
sound(X,fs); %播放声音
handles.axes1
subplot(2,2,1);
plot(X); %显示音频文件波形
title(‘原始音频信号’);
handles.X=X;
handles.fs=fs;
guidata(hObject, handles);
% — Executes on button press in pushbutton2.
function pushbutton2_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
%% 选择水印
[file1,pathname]=uigetfile('
.bmp’,‘请选择要识别的样本’);%跳出对话框
fname=fullfile(pathname,file1);
key=35;
%Arnold置换次数,作为密钥
Orignalmark=double(imread(fname)); %读入64*64的水印图片
[wrow,wcol]=size(Orignalmark);
if wrow~=wcol
error(‘wrow~=wcol error’);
end
%— 测试密钥key是否超出范围---------
n=check_arnold(wrow);
if (key+1)>n
error(‘arnold key error’);
end

subplot(2,2,2); hold on
imshow(Orignalmark),title(‘原始图像’);
handles.Orignalmark=Orignalmark;
handles.n=n;
guidata(hObject, handles);
% — Executes on button press in pushbutton3.
function pushbutton3_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
%% 嵌入水印
%水印嵌入--------------------------------------------------
X=handles.X;%读取音频
Orignalmark=handles.Orignalmark;%读取水印图像
fs=handles.fs;%频率
[wrow,wcol]=size(Orignalmark);
key=35;
Arnoldw=arnold(Orignalmark,wrow,key); %对水印图像进行Arnold转化
[c,l]=wavedec(X,2,‘db4’); %用db4小波对读入的声音文件进行2级小波分解
ca2=appcoef(c,l,‘db4’,2); %提取2级小波分解的低频系数和高频系数
cd2=detcoef(c,l,2);
cd1=detcoef(c,l,1);
lca=length(ca2); %低频长度
blocksize=fix(lca/(wrowwcol)); %每块的大小
water_vector=reshape(Arnoldw,1,wrow
wcol); %将置乱后的水印转化为一维的
wlength=wrowwcol; %水印的长度
a=0.25; %量化步长
j=1;
for i=1:wlength
Block=ca2(j:j+blocksize-1);
[U,S,V]=svd(double(Block));
cc=floor(S(1,1)/a);
if(Arnoldw(i)==1) %嵌入奇数倍
if(mod(cc,2)==0)
cc=cc+1;
end
S(1,1)=a
cc;
end
if(Arnoldw(i)==0) %嵌入偶数倍
if(mod(cc,2)==1)
cc=cc+1;
end
S(1,1)=acc;
end
Blockw=U
S*V’; %SVD 逆变换还原
ca2(j:j+blocksize-1)=Blockw;
j=j+blocksize;
end
c1=[ca2’,cd2’,cd1’]';
MarkedX=waverec(c1,l,‘db4’);%b为量化嵌入水印后的音频数据
subplot(2,2,3);
plot(MarkedX);
title(‘嵌入水印后音频’);
sound(MarkedX,fs);
handles.MarkedX=MarkedX;
handles.key=key;
guidata(hObject, handles);

% — Executes on button press in pushbutton4.
function pushbutton4_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
%水印嵌入--------------------------------------------------
[c,l]=wavedec(X,2,‘db4’); %用db4小波对读入的声音文件进行2级小波分解
ca2=appcoef(c,l,‘db4’,2); %提取2级小波分解的低频系数和高频系数
cd2=detcoef(c,l,2);
cd1=detcoef(c,l,1);
lca=length(ca2); %低频长度
blocksize=fix(lca/(wrowwcol)); %每块的大小
water_vector=reshape(Arnoldw,1,wrow
wcol); %将置乱后的水印转化为一维的
wlength=wrowwcol; %水印的长度
a=0.25; %量化步长
j=1;
for i=1:wlength
Block=ca2(j:j+blocksize-1);
[U,S,V]=svd(double(Block));
cc=floor(S(1,1)/a);
if(Arnoldw(i)==1) %嵌入奇数倍
if(mod(cc,2)==0)
cc=cc+1;
end
S(1,1)=a
cc;
end
if(Arnoldw(i)==0) %嵌入偶数倍
if(mod(cc,2)==1)
cc=cc+1;
end
S(1,1)=acc;
end
Blockw=U
S*V’; %SVD 逆变换还原
ca2(j:j+blocksize-1)=Blockw;
j=j+blocksize;
end

⛄三、运行结果

在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]韩纪庆,张磊,郑铁然.语音信号处理(第3版)[M].清华大学出版社,2019.
[2]柳若边.深度学习:语音识别技术实践[M].清华大学出版社,2019.

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

1.1 PID优化
1.2 VMD优化
1.3 配电网重构
1.4 三维装箱
1.5 微电网优化
1.6 优化布局
1.7 优化参数
1.8 优化成本
1.9 优化充电
1.10 优化调度
1.11 优化电价
1.12 优化发车
1.13 优化分配
1.14 优化覆盖
1.15 优化控制
1.16 优化库存
1.17 优化路由
1.18 优化设计
1.19 优化位置
1.20 优化吸波
1.21 优化选址
1.22 优化运行
1.23 优化指派
1.24 优化组合
1.25 车间调度
1.26 生产调度
1.27 经济调度
1.28 装配线调度
1.29 水库调度
1.30 货位优化
1.31 公交排班优化
1.32 集装箱船配载优化
1.33 水泵组合优化
1.34 医疗资源分配优化
1.35 可视域基站和无人机选址优化

2 机器学习和深度学习分类与预测
2.1 机器学习和深度学习分类
2.1.1 BiLSTM双向长短时记忆神经网络分类
2.1.2 BP神经网络分类
2.1.3 CNN卷积神经网络分类
2.1.4 DBN深度置信网络分类
2.1.5 DELM深度学习极限学习机分类
2.1.6 ELMAN递归神经网络分类
2.1.7 ELM极限学习机分类
2.1.8 GRNN广义回归神经网络分类
2.1.9 GRU门控循环单元分类
2.1.10 KELM混合核极限学习机分类
2.1.11 KNN分类
2.1.12 LSSVM最小二乘法支持向量机分类
2.1.13 LSTM长短时记忆网络分类
2.1.14 MLP全连接神经网络分类
2.1.15 PNN概率神经网络分类
2.1.16 RELM鲁棒极限学习机分类
2.1.17 RF随机森林分类
2.1.18 SCN随机配置网络模型分类
2.1.19 SVM支持向量机分类
2.1.20 XGBOOST分类

2.2 机器学习和深度学习预测
2.2.1 ANFIS自适应模糊神经网络预测
2.2.2 ANN人工神经网络预测
2.2.3 ARMA自回归滑动平均模型预测
2.2.4 BF粒子滤波预测
2.2.5 BiLSTM双向长短时记忆神经网络预测
2.2.6 BLS宽度学习神经网络预测
2.2.7 BP神经网络预测
2.2.8 CNN卷积神经网络预测
2.2.9 DBN深度置信网络预测
2.2.10 DELM深度学习极限学习机预测
2.2.11 DKELM回归预测
2.2.12 ELMAN递归神经网络预测
2.2.13 ELM极限学习机预测
2.2.14 ESN回声状态网络预测
2.2.15 FNN前馈神经网络预测
2.2.16 GMDN预测
2.2.17 GMM高斯混合模型预测
2.2.18 GRNN广义回归神经网络预测
2.2.19 GRU门控循环单元预测
2.2.20 KELM混合核极限学习机预测
2.2.21 LMS最小均方算法预测
2.2.22 LSSVM最小二乘法支持向量机预测
2.2.23 LSTM长短时记忆网络预测
2.2.24 RBF径向基函数神经网络预测
2.2.25 RELM鲁棒极限学习机预测
2.2.26 RF随机森林预测
2.2.27 RNN循环神经网络预测
2.2.28 RVM相关向量机预测
2.2.29 SVM支持向量机预测
2.2.30 TCN时间卷积神经网络预测
2.2.31 XGBoost回归预测
2.2.32 模糊预测
2.2.33 奇异谱分析方法SSA时间序列预测

2.3 机器学习和深度学习实际应用预测
CPI指数预测、PM2.5浓度预测、SOC预测、财务预警预测、产量预测、车位预测、虫情预测、带钢厚度预测、电池健康状态预测、电力负荷预测、房价预测、腐蚀率预测、故障诊断预测、光伏功率预测、轨迹预测、航空发动机寿命预测、汇率预测、混凝土强度预测、加热炉炉温预测、价格预测、交通流预测、居民消费指数预测、空气质量预测、粮食温度预测、气温预测、清水值预测、失业率预测、用电量预测、运输量预测、制造业采购经理指数预测

3 图像处理方面
3.1 图像边缘检测
3.2 图像处理
3.3 图像分割
3.4 图像分类
3.5 图像跟踪
3.6 图像加密解密
3.7 图像检索
3.8 图像配准
3.9 图像拼接
3.10 图像评价
3.11 图像去噪
3.12 图像融合
3.13 图像识别
3.13.1 表盘识别
3.13.2 车道线识别
3.13.3 车辆计数
3.13.4 车辆识别
3.13.5 车牌识别
3.13.6 车位识别
3.13.7 尺寸检测
3.13.8 答题卡识别
3.13.9 电器识别
3.13.10 跌倒检测
3.13.11 动物识别
3.13.12 二维码识别
3.13.13 发票识别
3.13.14 服装识别
3.13.15 汉字识别
3.13.16 红绿灯识别
3.13.17 虹膜识别
3.13.18 火灾检测
3.13.19 疾病分类
3.13.20 交通标志识别
3.13.21 卡号识别
3.13.22 口罩识别
3.13.23 裂缝识别
3.13.24 目标跟踪
3.13.25 疲劳检测
3.13.26 旗帜识别
3.13.27 青草识别
3.13.28 人脸识别
3.13.29 人民币识别
3.13.30 身份证识别
3.13.31 手势识别
3.13.32 数字字母识别
3.13.33 手掌识别
3.13.34 树叶识别
3.13.35 水果识别
3.13.36 条形码识别
3.13.37 温度检测
3.13.38 瑕疵检测
3.13.39 芯片检测
3.13.40 行为识别
3.13.41 验证码识别
3.13.42 药材识别
3.13.43 硬币识别
3.13.44 邮政编码识别
3.13.45 纸牌识别
3.13.46 指纹识别

3.14 图像修复
3.15 图像压缩
3.16 图像隐写
3.17 图像增强
3.18 图像重建

4 路径规划方面
4.1 旅行商问题(TSP)
4.1.1 单旅行商问题(TSP)
4.1.2 多旅行商问题(MTSP)
4.2 车辆路径问题(VRP)
4.2.1 车辆路径问题(VRP)
4.2.2 带容量的车辆路径问题(CVRP)
4.2.3 带容量+时间窗+距离车辆路径问题(DCTWVRP)
4.2.4 带容量+距离车辆路径问题(DCVRP)
4.2.5 带距离的车辆路径问题(DVRP)
4.2.6 带充电站+时间窗车辆路径问题(ETWVRP)
4.2.3 带多种容量的车辆路径问题(MCVRP)
4.2.4 带距离的多车辆路径问题(MDVRP)
4.2.5 同时取送货的车辆路径问题(SDVRP)
4.2.6 带时间窗+容量的车辆路径问题(TWCVRP)
4.2.6 带时间窗的车辆路径问题(TWVRP)
4.3 多式联运运输问题

4.4 机器人路径规划
4.4.1 避障路径规划
4.4.2 迷宫路径规划
4.4.3 栅格地图路径规划

4.5 配送路径规划
4.5.1 冷链配送路径规划
4.5.2 外卖配送路径规划
4.5.3 口罩配送路径规划
4.5.4 药品配送路径规划
4.5.5 含充电站配送路径规划
4.5.6 连锁超市配送路径规划
4.5.7 车辆协同无人机配送路径规划

4.6 无人机路径规划
4.6.1 飞行器仿真
4.6.2 无人机飞行作业
4.6.3 无人机轨迹跟踪
4.6.4 无人机集群仿真
4.6.5 无人机三维路径规划
4.6.6 无人机编队
4.6.7 无人机协同任务
4.6.8 无人机任务分配

5 语音处理
5.1 语音情感识别
5.2 声源定位
5.3 特征提取
5.4 语音编码
5.5 语音处理
5.6 语音分离
5.7 语音分析
5.8 语音合成
5.9 语音加密
5.10 语音去噪
5.11 语音识别
5.12 语音压缩
5.13 语音隐藏

6 元胞自动机方面
6.1 元胞自动机病毒仿真
6.2 元胞自动机城市规划
6.3 元胞自动机交通流
6.4 元胞自动机气体
6.5 元胞自动机人员疏散
6.6 元胞自动机森林火灾
6.7 元胞自动机生命游戏

7 信号处理方面
7.1 故障信号诊断分析
7.1.1 齿轮损伤识别
7.1.2 异步电机转子断条故障诊断
7.1.3 滚动体内外圈故障诊断分析
7.1.4 电机故障诊断分析
7.1.5 轴承故障诊断分析
7.1.6 齿轮箱故障诊断分析
7.1.7 三相逆变器故障诊断分析
7.1.8 柴油机故障诊断

7.2 雷达通信
7.2.1 FMCW仿真
7.2.2 GPS抗干扰
7.2.3 雷达LFM
7.2.4 雷达MIMO
7.2.5 雷达测角
7.2.6 雷达成像
7.2.7 雷达定位
7.2.8 雷达回波
7.2.9 雷达检测
7.2.10 雷达数字信号处理
7.2.11 雷达通信
7.2.12 雷达相控阵
7.2.13 雷达信号分析
7.2.14 雷达预警
7.2.15 雷达脉冲压缩
7.2.16 天线方向图
7.2.17 雷达杂波仿真

7.3 生物电信号
7.3.1 肌电信号EMG
7.3.2 脑电信号EEG
7.3.3 心电信号ECG
7.3.4 心脏仿真

7.4 通信系统
7.4.1 DOA估计
7.4.2 LEACH协议
7.4.3 编码译码
7.4.4 变分模态分解
7.4.5 超宽带仿真
7.4.6 多径衰落仿真
7.4.7 蜂窝网络
7.4.8 管道泄漏
7.4.9 经验模态分解
7.4.10 滤波器设计
7.4.11 模拟信号传输
7.4.12 模拟信号调制
7.4.13 数字基带信号
7.4.14 数字信道
7.4.15 数字信号处理
7.4.16 数字信号传输
7.4.17 数字信号去噪
7.4.18 水声通信
7.4.19 通信仿真
7.4.20 无线传输
7.4.21 误码率仿真
7.4.22 现代通信
7.4.23 信道估计
7.4.24 信号检测
7.4.25 信号融合
7.4.26 信号识别
7.4.27 压缩感知
7.4.28 噪声仿真
7.4.29 噪声干扰

7.5 无人机通信

7.6 无线传感器定位及布局方面
7.6.1 WSN定位
7.6.2 高度预估
7.6.3 滤波跟踪
7.6.4 目标定位
7.6.4.1 Dv-Hop定位
7.6.4.2 RSSI定位
7.6.4.3 智能算法优化定位
7.6.5 组合导航

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值