✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,求助可私信。
🔥 内容介绍
随着无人机技术的快速发展,无人机在城市环境中的应用日益广泛。然而,复杂城市地形对无人机航迹规划提出了严峻挑战。本文提出了一种基于花朵授粉算法(FPA)的无人机三维避障路径规划方法。该方法通过模拟花朵授粉过程,优化无人机的航迹,实现复杂城市地形下的安全、高效飞行。
引言
无人机三维路径规划是无人机自主导航的关键技术之一。在复杂城市地形中,无人机面临着建筑物、电线杆等障碍物的阻挡,需要进行避障规划以确保安全飞行。传统路径规划算法往往效率低、收敛速度慢,难以满足复杂城市地形下的实时规划需求。
花朵授粉算法(FPA)
花朵授粉算法(FPA)是一种基于自然界花朵授粉过程的优化算法。该算法模拟雄蕊花粉通过昆虫媒介传播到雌蕊的过程,通过迭代更新花粉的位置来寻找最优解。
基于 FPA 的无人机三维避障路径规划
本文提出的基于 FPA 的无人机三维避障路径规划方法主要包括以下步骤:
-
**障碍物建模:**使用激光雷达或其他传感器获取城市环境中障碍物的信息,建立障碍物模型。
-
**花粉初始化:**随机初始化一组花粉,每个花粉代表一条候选航迹。
-
**授粉:**模拟昆虫媒介的授粉过程,通过交叉授粉和自授粉更新花粉的位置。
-
**局部搜索:**在花粉更新的基础上,对每个花粉进行局部搜索,优化航迹的局部细节。
-
**适应度计算:**计算每个花粉的适应度,适应度函数包括航迹长度、障碍物避障距离和飞行时间等因素。
-
**选择:**根据适应度值选择最优花粉,作为无人机的航迹。
实验结果
本文在真实城市环境中对提出的方法进行了实验。实验结果表明,该方法能够有效规划出避障的三维航迹,满足无人机在复杂城市地形下的安全飞行需求。与传统路径规划算法相比,该方法具有更高的规划效率和收敛速度。
结论
本文提出了一种基于花朵授粉算法(FPA)的无人机三维避障路径规划方法。该方法通过模拟花朵授粉过程,优化无人机的航迹,实现复杂城市地形下的安全、高效飞行。实验结果验证了该方法的有效性,为无人机在复杂城市环境中的自主导航提供了新的思路。。实验结果表明,该方法能够有效地规划出满足避障要求和优化目标的三维航迹。与其他算法相比,该方法具有以下优点:
-
**全局搜索能力强:**FPA 的非生物授粉机制能够有效地探索搜索空间,提高算法的全局搜索能力。
-
**局部搜索能力强:**FPA 的生物授粉机制能够对局部最优解进行精细搜索,提高算法的局部搜索能力。
-
**收敛速度快:**FPA 算法收敛速度快,能够在较短的时间内找到较优解。
结论
本文提出了一种基于 FPA 的无人机避障三维航迹规划方法。该方法结合了 FPA 的全局搜索能力和局部搜索能力,能够有效地规划出满足避障要求和优化目标的三维航迹。实验结果表明,该方法具有全局搜索能力强、局部搜索能力强、收敛速度快的优点。该方法为复杂城市地形环境下的无人机三维路径规划提供了新的思路。
📣 部分代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集
temp = randperm(357);
P_train = res(temp(1: 240), 1: 12)';
T_train = res(temp(1: 240), 13)';
M = size(P_train, 2);
P_test = res(temp(241: end), 1: 12)';
T_test = res(temp(241: end), 13)';
N = size(P_test, 2);
%% 数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);
⛳️ 运行结果
🔗 参考文献
[1] 杜晓玉,郭启程,李茵茵,et al.城市环境下基于改进鲸鱼算法的无人机三维路径规划方法[J].计算机科学, 2021, 48(12):8.DOI:10.11896/jsjkx.201000021.
[2] 高九州,张焯.基于改进A*算法的无人机三维空间避障路径规划[J].计算机测量与控制, 2023(12):203-209,223.
[3] 刘艳,李文波,刘新彪,等.复杂环境下无人机三维航迹规划及避障算法[J].电光与控制, 2023, 30(5):93-98.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类