优化求解
文章平均质量分 91
matlab科研社
博主简介:某大厂资深算法工程师,从事Matlab算法仿真工作10年,擅长智能优化算法、神经网络预测、机器学习、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,更多仿真源码、算法改进、Matlab项目和期刊发表可私信合作。博主简介:某大厂资深算法工程师,从事Matlab算法仿真工作10年,擅长智能优化算法、神经网络预测、机器学习、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,更多仿真源码、算法改进、Matlab项目和期刊发表可私信合作。文章底部有博主联系方式。
展开
-
动态狩猎领导力优化算法Dynamic Hunting Leadership optimization algorithm附matlab代码
在当今竞争激烈的商业环境中,团队协作的重要性愈发凸显。高效的团队领导力是取得成功的关键要素之一。然而,传统的领导力模型往往过于静态,无法适应瞬息万变的市场环境和复杂的团队动态。为了应对这一挑战,近年来涌现了一种新型的领导力优化算法——动态狩猎领导力算法(Dynamic Hunting Leadership optimization algorithm),它通过模拟自然界中狼群的狩猎行为,为团队协作提供了一种智能、灵活的策略。动态狩猎领导力算法概述动态狩猎领导力算法的核心思想源于自然界中狼群的狩猎行为。原创 2024-05-31 11:07:53 · 1319 阅读 · 0 评论 -
【智能优化算法】Komodo Mlipir Algorithm科莫多巨蜥算法附matlab代码
智能优化算法近年来在解决各种复杂优化问题方面取得了显著进展。这些算法通常受到自然界中生物行为和现象的启发,例如遗传算法(GA)模拟了生物进化过程,粒子群优化算法(PSO)模拟了鸟群觅食行为。随着研究的不断深入,越来越多的受自然启发的优化算法不断涌现,其中科莫多巨蜥算法 (Komodo Mlipir Algorithm, KMA) 便是近年来备受关注的一种新型智能优化算法。科莫多巨蜥算法简介科莫多巨蜥 (Komodo dragon) 是世界上最大的蜥蜴,以其强烈的嗅觉、凶猛的捕猎方式和适应能力著称。原创 2024-05-30 15:03:26 · 1140 阅读 · 0 评论 -
【负载均衡】基于生物地理学优化BBO算法实现网络负载均衡优化附matlab代码
随着互联网技术的飞速发展,网络流量呈现爆炸式增长,如何有效地分配网络流量,避免服务器过载,保证网络服务的正常运行,成为一个迫切需要解决的问题。负载均衡技术应运而生,通过将网络流量分发到多个服务器上,实现负载均衡,提升网络服务性能和可靠性。在众多负载均衡算法中,生物地理学优化算法(Biogeography-based Optimization, BBO)因其具有简单易懂、收敛速度快、全局搜索能力强等优点,在网络负载均衡领域得到广泛应用。原创 2024-05-29 20:37:52 · 806 阅读 · 0 评论 -
【白鲸优化算法】 tent、chebyshev、Singer、Logistic、Sine, Circle多种混沌初始化的白鲸优化算法附matlab代码
白鲸优化算法 (BWO) 是一种新兴的元启发式优化算法,其灵感来源于白鲸在海洋中的社会行为和声呐定位机制。BWO 算法以其简单性、鲁棒性和高效性而备受关注,并已成功应用于解决各种工程优化问题。然而,与其他元启发式算法一样,BWO 的性能也受到初始种群质量的影响。为了进一步提升 BWO 算法的性能,本文将探讨几种不同的混沌初始化策略,并分析其对 BWO 算法的优化效果。混沌理论与混沌初始化混沌理论是一种研究非线性系统复杂行为的理论。原创 2024-05-27 15:01:56 · 1101 阅读 · 0 评论 -
【特征选择】基于二元猫群算法特征选择问题附matlab代码
在机器学习领域,特征选择是一个至关重要的预处理步骤,它旨在从原始数据集中选择出最具判别力的特征子集,以提高模型的性能和效率。特征选择不仅可以减少数据维度,降低模型的复杂度,还可以去除冗余和噪声特征,提升模型的泛化能力。传统的特征选择方法主要分为三大类:过滤式、包裹式和嵌入式。过滤式方法根据特征与目标变量之间的相关性进行选择,例如方差分析、互信息等;包裹式方法将特征选择看作一个优化问题,通过不断地尝试不同特征组合来寻找最优子集,例如递归特征消除;嵌入式方法将特征选择集成到模型训练过程中,例如正则化方法。原创 2024-05-25 14:33:24 · 345 阅读 · 0 评论 -
【优化选址】基于模拟退火算法求解配送中心选址问题附matlab代码
配送中心选址问题作为物流系统中的关键环节,直接影响着物流成本、服务效率和企业竞争力。随着电子商务的快速发展和市场竞争日益激烈,如何合理选择配送中心位置,以降低成本、提高服务质量,成为企业决策的关键。本文将深入探讨基于模拟退火算法的配送中心选址问题求解方法,并结合实际应用案例进行说明。一、配送中心选址问题概述配送中心选址问题是指在给定的区域内,选择最佳的配送中心位置,以满足客户需求并最小化物流成本。通常情况下,需要考虑以下因素:**客户需求:**包括客户数量、地理分布、需求量和需求时间等。原创 2024-05-22 12:47:42 · 488 阅读 · 0 评论 -
【优化求解】基于粒子群算法结合遗传算法求解考虑成本和碳排放量切削参数优化问题附Matlab代码
随着制造业的快速发展,节能减排已成为全球性议题。切削加工作为制造业的重要环节,其过程中的能量消耗和碳排放量不容忽视。因此,在保证加工质量的前提下,优化切削参数以降低成本和碳排放量具有重要意义。原创 2024-05-09 13:08:05 · 822 阅读 · 0 评论 -
【车间调度】基于遗传算法求解柔性作业车间调度问题FJSP(工件数量 工序数量可自行调节)附Matlab代码
柔性作业车间调度问题(FJSP)是生产计划领域中的一个经典问题,其目标是在满足工艺约束和资源限制的前提下,优化生产过程的性能指标,例如完工时间、生产成本、资源利用率等。FJSP 的特点是:工件可以在多个机器上进行加工,每台机器都可以加工多种工序;工件的加工顺序可以灵活调整;不同工序的加工时间在不同的机器上可能不同。由于 FJSP 的复杂性,传统的精确算法难以在合理的时间内找到最优解。因此,近年来,基于遗传算法(GA)的启发式算法被广泛应用于 FJSP 的求解。原创 2024-05-09 12:41:26 · 745 阅读 · 0 评论 -
【优化选址】基于遗传算法实现三级物流选址附matlab代码
在物流配送中心选址模型中做如下假设:(1)工厂到物流中心的总运量小于物流中心的总供应量(2)物流中心到客户的总运量大于用户需求量(3)工厂到物流中心的总运量等于物流中心到客户的总运量(4)选择该物流中心才出现运量(5)一个客户只对应一个物流中心,一个物流中心可对应多个客户(6)运量不可小于0(7)物流中心个数不可超过上限。原创 2024-05-07 13:08:56 · 846 阅读 · 0 评论 -
【优化生产】基于双种群遗传算法求解装配线平衡问题附Matlab代码
装配线平衡问题是生产制造领域中一个经典的优化问题,其目标是在满足生产节拍要求的前提下,将各工序合理分配到不同的工作站,使得各工作站的负荷尽可能均衡,从而提高生产效率和降低生产成本。随着制造业的不断发展,装配线平衡问题变得更加复杂,传统的人工求解方法效率低下,难以满足实际生产需求。近年来,遗传算法作为一种高效的智能优化算法,被广泛应用于解决装配线平衡问题。双种群遗传算法是一种基于种群进化的优化算法,其主要思想是将种群划分为两个子种群,分别进行进化,并通过种群之间的信息交换来提高算法的搜索效率和寻优能力。原创 2024-05-06 08:58:26 · 803 阅读 · 0 评论 -
【优化求解】基于蛇群算法和遗传算法实现农机耕种分配附matlab代码
随着农业现代化的不断发展,农机耕种分配问题成为了农业生产管理中的一个重要课题。如何高效合理地分配农机资源,实现耕种作业的最佳效果,是提高农业生产效率的关键。近年来,随着人工智能技术的快速发展,各种智能优化算法被应用于农机耕种分配问题,取得了显著的成果。蛇群算法和遗传算法蛇群算法是一种模拟蛇类觅食行为的群体智能优化算法,具有鲁棒性强、收敛速度快等优点。遗传算法是一种模拟生物进化过程的群体智能优化算法,具有全局搜索能力强、易于与其他算法结合等优点。基于蛇群算法和遗传算法的农机耕种分配模型。原创 2024-05-03 21:41:00 · 1096 阅读 · 0 评论 -
【智能优化算法】Fertilization optimization algorithm (FO)施肥优化算法附Matlab代码
施肥优化算法 (Fertilization Optimization Algorithm, FO) 是一种新型的智能优化算法,由 Seyedali Mirjalili 于 2015 年提出。该算法模拟了植物生长过程中根系对养分的吸收和利用过程,具有简单易懂、参数少、收敛速度快等优点。近年来,FO 算法在工程优化、图像处理、机器学习等领域得到了广泛的应用,并取得了良好的效果。FO 算法是一种简单高效的智能优化算法,具有广泛的应用前景。原创 2024-04-25 00:28:10 · 773 阅读 · 0 评论 -
【翼形优化】基于遗传算法求解机翼形状优化问题附Matlab代码
机翼作为飞机的重要组成部分,其形状对飞机的飞行性能有着至关重要的影响。近年来,随着航空技术的不断发展,对于机翼形状优化的需求也越来越迫切。传统的设计方法往往依赖于经验和人工计算,效率低下且难以获得最优解。而遗传算法作为一种强大的全局优化算法,为机翼形状优化问题提供了新的思路。遗传算法是一种模拟自然界生物进化过程的随机搜索算法。它通过模拟生物的遗传和变异过程,不断优化种群中的个体,最终找到最优解。遗传算法具有以下特点:全局搜索能力强:遗传算法能够在整个搜索空间内进行搜索,而不局限于局部最优解。原创 2024-04-20 15:37:12 · 519 阅读 · 0 评论 -
【智能优化算法】鹦鹉优化算法附matlab代码
鹦鹉优化算法(PO)是一种基于自然界鹦鹉群体行为的智能优化算法。它模拟了鹦鹉在觅食过程中通过信息共享和协作来提高觅食效率的行为。PSO算法的主要特点包括:**种群初始化:**随机初始化一组候选解,称为种群。**适应度计算:**评估每个候选解的适应度,即目标函数的值。**信息共享:**每个鹦鹉与种群中其他鹦鹉共享其当前位置和最佳位置的信息。**速度更新:**根据共享的信息,每个鹦鹉更新其速度,朝着更高适应度的区域移动。**位置更新:**根据更新的速度,每个鹦鹉更新其位置,探索新的候选解。原创 2024-04-16 20:15:46 · 921 阅读 · 0 评论 -
【电力系统】基于花朵授粉授粉求解含风电场的十机24时系统机组出力问题附matlab代码
随着可再生能源的快速发展,风电场已成为电力系统中重要的组成部分。然而,风电场的随机性和波动性给电力系统安全稳定运行带来了挑战。为了解决这一问题,本文提出了一种基于花朵授粉算法(FPA)求解含风电场的十机24时系统机组出力问题的优化方法。该方法考虑了风电场出力预测误差、机组出力约束和系统安全稳定约束,旨在实现电力系统经济安全运行。原创 2024-04-14 11:44:46 · 944 阅读 · 0 评论 -
【优化求解】基于蚁群算法求解考虑航班延误恢复经济损失优化问题附Matlab代码
航班延误是航空运输中常见的现象,会对航空公司和乘客造成巨大的经济损失。为了减少航班延误带来的经济损失,本文提出了一种基于蚁群算法的航班延误恢复经济损失优化模型。该模型考虑了航班延误的各种因素,包括延误时间、延误原因、乘客数量和航班类型等。通过蚁群算法的优化求解,可以得到航班延误恢复经济损失的最佳方案,从而最大限度地减少航班延误带来的经济损失。原创 2024-04-13 16:42:03 · 1342 阅读 · 0 评论 -
【物理应用】基于布谷鸟搜索算法求解功率角摆动曲线优化问题附Matlab代码
功率角摆动曲线是电力系统稳定性分析中的重要指标。本文提出了一种基于布谷鸟搜索算法的功率角摆动曲线优化方法。BSA是一种受布谷鸟繁殖行为启发的元启发式算法。通过模拟布谷鸟的筑巢和产卵行为,BSA可以有效地搜索最优解。本文将CS应用于功率角摆动曲线优化问题,以最小化摆动幅度和提高稳定性。引言功率角摆动曲线描述了同步发电机在扰动后的功率角变化情况。其形状和幅度反映了电力系统的稳定性。摆动幅度过大或持续时间过长,都可能导致系统失稳。因此,优化功率角摆动曲线对于电力系统安全运行至关重要。布谷鸟搜索算法。原创 2024-04-11 13:07:24 · 583 阅读 · 0 评论 -
【智能优化算法】恒星振荡优化器SOO附matlab代码
恒星振荡优化器(Starling Oscillation Optimizer,SOO)是一种受恒星振荡现象启发的元启发式优化算法。它由 Seyedali Mirjalili 等人于 2020 年提出,旨在解决复杂优化问题。恒星振荡现象恒星振荡是一种天体物理现象,指恒星以其固有频率振荡。这些振荡是由恒星内部的压力和引力不平衡引起的。恒星的振荡模式和频率取决于其质量、半径和内部结构。SOO 算法SOO 算法将恒星振荡现象抽象为一个优化过程。它将候选解视为恒星,并根据它们的适应度值对其进行振荡。原创 2024-04-11 12:35:13 · 713 阅读 · 0 评论 -
【优化调度】基于遗传算法解农业水资源调度问题附matlab代码
农业水资源调度是农业生产中的重要环节,对粮食安全和农业可持续发展至关重要。传统的农业水资源调度方法存在效率低、精度差等问题,难以满足现代农业生产的需要。遗传算法是一种有效的全局优化算法,具有鲁棒性强、并行性好等优点,在解决复杂优化问题方面表现出良好的效果。本文提出了一种基于遗传算法的农业水资源调度优化模型,通过模拟水资源系统运行过程,实现水资源的合理分配和高效利用。原创 2024-04-08 12:56:12 · 829 阅读 · 0 评论 -
【资源分配】基于博弈论实现有限反馈认知MIMO系统的联合功率分配与反馈速率控制资源分配附Matlab代码
在认知无线电网络中,有限反馈认知MIMO系统面临着联合功率分配和反馈速率控制的资源分配问题。为了解决这一问题,本文提出了一种基于博弈论的联合资源分配算法。该算法将联合资源分配问题建模为一个博弈模型,其中每个用户是一个博弈者,目标函数是其传输速率。通过求解博弈模型的纳什均衡,可以得到联合功率分配和反馈速率控制的最佳策略。仿真结果表明,该算法可以有效地提高系统容量,并降低反馈开销。原创 2024-04-05 23:49:56 · 1005 阅读 · 0 评论 -
【优化调度】基于遗传算法求解港口集装箱的最短时间调度优化问题附Matlab代码
港口集装箱调度优化问题是一个复杂的组合优化问题,其目标是确定最佳的集装箱装卸顺序,以最小化总调度时间。本文提出了一种基于遗传算法(GA)的优化调度方法,以解决该问题。GA 是一种启发式算法,它模拟生物进化过程来搜索最优解。原创 2024-04-05 23:32:46 · 862 阅读 · 0 评论 -
matlab|船舶调度|基于模拟退化算法的船舶进港排班优化问题附matlab代码
船舶进港排班优化问题是船舶调度中的一个重要问题,其目标是合理安排船舶进港时间和泊位分配,以提高港口吞吐量和降低船舶等待时间。本文提出了一种基于模拟退化算法的船舶进港排班优化模型,该模型考虑了船舶类型、泊位类型、潮汐影响等因素,并通过模拟退化算法求解该模型,得到了最优的船舶进港排班方案。原创 2024-03-29 23:13:16 · 1433 阅读 · 0 评论 -
【生产优化】基于双种群遗传算法求解车间生产线平衡问题附Matlab代码
车间生产线平衡问题(APBL)是制造业中一个重要的优化问题,其目标是将任务分配给生产线上的工作站,以最小化生产时间和工作站闲置时间。本文提出了一种基于双种群遗传算法(DGA)求解 APBL 的新方法。该方法使用两个种群来探索解空间,一个种群专注于任务分配,另一个种群专注于工作站分配。通过使用协同进化策略,两个种群相互协作,提高了算法的搜索效率和解的质量。原创 2024-03-26 21:01:56 · 344 阅读 · 0 评论 -
【优化调度】基于NSGAII实现软件项目研发周期和研发成本多目标技能员工调度优化模型求解附matlab代码
i,j,d分别表示员工、技能和任务(1⩽i⩽n, ,1⩽j原创 2024-03-24 23:34:49 · 747 阅读 · 0 评论 -
【优化求解】基于遗传算法求解认知无线电优化问题附Matlab代码
认知无线电(CR)技术是一种智能无线通信技术,它允许未授权用户在不干扰授权用户的情况下使用授权频谱。CR 系统面临着许多优化问题,例如频谱分配、功率控制和信道选择。这些问题通常是 NP 难的,因此需要高效的优化算法来求解。遗传算法遗传算法 (GA) 是一种受生物进化启发的元启发式算法。它通过模拟自然选择过程来搜索最优解。GA 的基本原理包括:**种群初始化:**随机生成一组候选解,称为种群。**适应度计算:**评估每个解的适应度,即其解决问题的程度。原创 2024-03-17 09:24:59 · 905 阅读 · 0 评论 -
【优化选址】基于NSGAII求解考虑成本、救援时间和可靠性的海上救援选址多目标问题附matlab代码
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。🍎个人主页:Matlab科研工作室🍊个人信条:格物致知。更多Matlab完整代码及仿真定制内容点击👇。原创 2024-03-15 15:36:34 · 862 阅读 · 0 评论 -
多目标指数分布优化器MOEDO附matlab代码
指数分布优化器(EDO)是一种启发式方法,它利用指数分布理论来识别复杂优化问题的全局解。本研究通过引入其多目标版本,即多目标 EDO(MOEDO),扩展了 EDO 的适用性,该版本增强了精英非支配排序和拥挤距离机制。MOEDO 中集成了信息反馈机制 (IFM),旨在平衡探索和利用,从而提高收敛性并减轻传统方法中的局部最优停滞,这是传统方法中的一个显着限制。我们的研究表明,MOEDO 优于 MOMPA、NSGA-II、MOAOA、MOEA/D 和 MOGNDO 等著名算法。原创 2024-03-09 21:48:34 · 814 阅读 · 0 评论 -
【车间调度】基于遗传算法求解车间任务分配问题(含甘特图)附Matlab代码
车间任务分配问题是一个经典的优化问题,其目标是为一组任务分配到一组机器上,以最小化总的加工时间或其他目标函数。该问题在制造业中广泛存在,例如生产线调度、作业车间调度和柔性制造系统调度。原创 2024-03-06 23:41:17 · 761 阅读 · 0 评论 -
【背包问题】基于NSGAII实现多目标背包问题求解附matlab代码
多目标背包问题(Multi-Objective Knapsack Problem,MOKP)是背包问题的多目标版本,其目标是在满足背包容量限制的情况下,从一组物品中选择一个子集,以最大化多个目标函数。原创 2024-03-04 08:11:14 · 638 阅读 · 0 评论 -
【智能优化算法】多目标芒果搜索算法MOMSA附matlab代码
本文提出了一种新的多目标芒果搜索算法(MOMSA)来处理复杂的优化问题,包括实际工程优化问题。芒果搜索算法(MMA)是最近报道的自然启发超启发算法,它的灵感来自于独特的狩猎行为和性食人魔。该算法采用相同的潜在的MSA收敛机制,结合精英的非支配排序方法来估计帕累托最优解。此外,MOMSA采用拥挤距离机制,以扩大所有目标的最佳解决方案的覆盖面。为了验证其性能,我们进行了29个案例研究,包括20个多目标基准问题(ZTD、DTLZ和CEC2009)和9个工程设计问题。原创 2024-03-04 07:10:12 · 1248 阅读 · 0 评论 -
【和声搜索算法】高斯变异和声搜索多目标优化算法附matlab代码
和声搜索算法(HSA)是一种基于音乐和声原理的新型元启发式算法。近年来,HSA因其简单有效而被广泛应用于各种优化问题。然而,HSA在处理多目标优化问题时存在收敛速度慢、多样性差等问题。为了解决这些问题,本文提出了一种高斯变异和声搜索多目标优化算法(GMHSA-MO)。该算法将高斯变异策略引入HSA,以增强种群多样性并提高收敛速度。此外,该算法还采用非支配排序和拥挤度计算机制,以维持种群的多样性并引导搜索过程向帕累托最优解集收敛。引言多目标优化问题(MOP)是指同时优化多个相互冲突的目标函数的问题。原创 2024-03-01 09:28:37 · 853 阅读 · 0 评论 -
【布局优化】基于遗传算法实现车间布局优化附matlab代码
车间布局优化是制造业中一项重要的课题,合理的车间布局可以有效提高生产效率、降低生产成本。本文介绍了一种基于遗传算法的车间布局优化方法。该方法利用遗传算法的全局搜索能力和快速收敛性,实现车间布局的优化。1. 车间布局优化问题车间布局优化问题是指在给定的车间空间内,合理安排各工序或设备的位置,以满足特定的目标函数。常见的目标函数包括:最小化物料搬运距离最小化生产时间最大化空间利用率2. 遗传算法遗传算法是一种基于自然界进化原理的优化算法。原创 2024-02-29 12:48:09 · 878 阅读 · 0 评论 -
【智能优化算法】攻击人工射线搜寻优化(AMRFA)附matlab代码
1. 引言人工射线搜寻优化(Artificial Ray Searching for Optimization,AMRFA)是一种基于射线理论的智能优化算法,它模拟了光线在介质中传播和反射的物理现象,具有较好的全局搜索能力和收敛速度。然而,AMRFA也存在一定的缺陷,例如容易陷入局部最优和收敛速度较慢等问题。本文将介绍一种攻击AMRFA的优化算法,旨在克服这些缺陷,提高算法的性能。2. AMRFA算法AMRFA算法的基本原理如下:初始化:随机生成一组初始光线,并计算每个光线的适应度值。原创 2024-02-26 12:44:41 · 1582 阅读 · 0 评论 -
【智能优化算法】苦鱼优化 (BFO) 算法附matlab代码
苦鱼优化(BFO)算法是一种受自然启发的优化算法,模仿苦鱼的社会觅食行为。该算法利用苦鱼的自然行为原理(例如探索、利用和信息共享)来找到优化问题的最佳解决方案。BFO 算法的 MATLAB 代码通常涉及以下关键组件:初始化:用搜索空间中的随机位置初始化苦鱼种群。目标函数:定义需要优化的目标函数。这个函数代表了要解决的问题。苦鱼运动:根据苦鱼的个体和集体行为模拟苦鱼的运动。这包括探索新领域、开发完善有前景的解决方案以及鱼类之间的信息共享。评估:根据目标函数评估每条苦鱼的适应度。原创 2024-02-21 23:16:32 · 974 阅读 · 0 评论 -
【智能优化算法】非垄断搜索NO优化算法附matlab代码
非垄断搜索(NO)优化算法是一种基于自然选择和种群进化的智能优化算法。它通过模拟自然界中物种的竞争和协作,在搜索空间中寻找最优解。与其他优化算法相比,NO算法具有非垄断性、全局搜索能力强、收敛速度快等优点。原创 2024-02-19 22:27:39 · 845 阅读 · 0 评论 -
【智能优化算法】中华穿山甲Chinese Pangolin Optimizer (CPO)附matlab代码
本文提出了一种新颖的仿生元启发式算法,称为中国穿山甲优化器(CPO)。CPO算法从中华穿山甲中观察到的两种不同的狩猎行为(即引诱和捕食)中汲取灵感,将这些行为体现在五个关键阶段:吸引和捕获、移动和进食、搜索和定位、快速接近以及挖掘和进食。这些阶段经过数学建模和实施,以促进复杂搜索空间内的高效优化。为了验证 CPO 算法的性能,在标准化实验条件下进行了综合评估,使用基准函数和实际工程问题将其有效性与其他元启发式算法进行基准比较。原创 2024-02-12 12:54:08 · 1477 阅读 · 0 评论 -
【蜣螂算法】基于Levy飞行和T分布扰动的蜣螂优化算法(IDBO)求解单目标函数附matlab代码
蜣螂算法(BO)是一种受蜣螂滚动粪球行为启发的元启发式算法。蜣螂在滚动粪球的过程中,会根据粪球的气味和周围环境的信息来调整自己的滚动方向和速度。这种行为具有很强的鲁棒性和自组织性,因此被应用于求解各种优化问题。原创 2024-02-07 21:27:43 · 1084 阅读 · 0 评论 -
【猎人猎物优化算法】基于Cubic映射动态折射反向学习强制切换贪婪选择多种策略的猎人猎物算法IHPO求解单目标优化问题附matlab代码
本文提出了一种基于 Cubic 映射动态折射反向学习强制切换贪婪选择多种策略的猎人猎物算法 IHPO,用于求解单目标优化问题。该算法将 Cubic 映射引入到猎人猎物算法中,以增强算法的全局搜索能力。同时,该算法还采用了动态折射反向学习策略,以提高算法的局部搜索能力。此外,该算法还采用了强制切换贪婪选择多种策略,以提高算法的多样性。实验结果表明,该算法在求解单目标优化问题方面具有良好的性能。原创 2024-02-07 15:04:15 · 1318 阅读 · 0 评论 -
【美洲狮算法】 美洲狮Puma优化算法附matlab代码
优化技术,特别是元启发式算法,在优化和提高不同模型和系统的效率方面非常有效,以其在合理的时间范围内获得最佳或接近最佳解决方案的能力而闻名。在这项工作中,Puma Optimizer(PO)被提出作为一种新的优化算法,其灵感来自美洲狮的智力和生命。在该算法中,在探索和开发的每个阶段都提出了独特而强大的机制,这增加了算法针对各种优化问题的性能。此外,还提出了一种新型智能机制,即一种相变超启发式机制(PI)。利用这种机制,PO算法可以在优化操作期间执行相变操作并平衡两个相。每个阶段都会根据问题的性质自动调整。原创 2024-02-01 10:25:05 · 466 阅读 · 0 评论 -
基于遗传算法求解时间约束物流企业运输成本优化问题附Matlab代码
在物流运输中,企业经常面临着时间约束和运输成本优化的问题。时间约束是指货物必须在规定的时间内送达目的地,而运输成本优化是指在满足时间约束的前提下,尽可能降低运输成本。遗传算法是一种模拟生物进化过程的优化算法。它通过不断迭代,逐步优化目标函数的值。遗传算法的基本步骤如下:初始化种群:随机生成一组解作为初始种群。评估种群:计算每个解的目标函数值。选择:根据目标函数值,选择最优的解作为父母。交叉:将两个父母的基因片段进行交换,生成新的解。变异:对新的解进行随机扰动,以增加种群的多样性。原创 2024-01-29 22:15:28 · 831 阅读 · 0 评论