✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
蒙特卡洛(MonteCarlo)法,或称统计试验法、计算机随机模拟方法,起源于美国在第一次世界大战进研制原子弹的“曼哈顿计划”。该计划的主持人之一、数学家冯·诺伊曼用驰名世界的赌城—摩纳哥的MonteCarlo—来命名这种方法,为它蒙上了一层神秘色彩。
一、蒙特卡洛法的基本思想及其应用
MonteCarlo方法是一种基于“随机数”,采用统计抽样方法,近似求解数学问题或物理问题的过程。把统计模拟法用于数值计算已有200多年的历史,最早是法国数学家蒲丰(1707-1788)。他进行了著名的“蒲丰投针实验”,早以此来求圆周率π的近似值。本世纪40年代,随着电子计算机的出现,特别是近年来高速电子计算机的出现,使得用数学方法在计算机上大量、快速地模拟这样的试验成为可能。
统计试验法通常用来研究概率过程,研究问题时常涉及下列一些与随机因素有关的概率,如各类概率等,一般来说,建立描述过程的复杂的概率模型是不成问题的,但用数学方法研究与分析这些模型是却很困难,问题的维数(即变量的个数)可能高达数百甚至数千。对这类问题,难度随维数的增加呈指数增长,这就是所谓的“维数的灾难”(Course Dimensionality)。传统的数值方法难以对付(即使使用速度最快的计算机),甚至达到了无法进行的地步。因此,唯一可取的研究方法是统计实验法。
统计模拟(蒙特卡洛法),在系统工程中的应用日益广泛,据国外有关文献报道其应用领域大致有:
1.航空运输排队,机场设计等;
2.港口设计,泊位研究等;
3.消防车或救护车的布局和调派;
4.城市公共汽车作业调度;
5.出租汽车调度计划;
6.铁路货运调度计划;
7.加油站、停车场等设计;
8.售票所布局;
9.存储模拟,仓库布局等;
10.设备维修计划;
11.生产过程的安排;
12.工厂的单件、小批生产的作业计划;
13.销售预测;
二、排队或等待问题的分析
在日常生活中,我们每天都会遇到各种各样的排队。比如:银行中取款要排队,火车站买票要排队,超市、商场中购物付款要排队,预订旅馆或机票时也要排队,人们仿佛置身于一个排队的社会。
所谓排队,就是等候消费服务的顾客在进入点前排队(意大利G·佩里切利)。排队的类型一般来说有以下几种:
一个服务点。即只有一个点可供顾客选择等候服务,顾客只能按顺序一个接一个等侯,这样排队,顾客多的时候最混乱。现在这种排队类型已不多见。
多个服务点。即有两个或两个以上的点可供顾客选择,每一点都可排成一条队。多个服务点可减轻一个服务点的负担,增加顾客选择服务点的灵活性,同时顾客还可选择自己喜欢的服务员。
专门服务点。即专门为某些特殊的顾客开辟的服务点。专门的服务点可以保证某些特殊顾客的特殊权益,如:减少顾客等待服务时间,同时使一些顾客分离出来,减轻其服务口的压力。
我们拿一个理发店的实际例子来分析:
⛳️ 运行结果
🔗 参考文献
[1]朱陆陆.蒙特卡洛方法及应用[D].华中师范大学[2024-05-04].DOI:CNKI:CDMD:2.1015.520739.
🎈 部分理论引用网络文献,若有侵权联系博主删除
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类