✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
柴油机作为重要的动力设备,其运行状态的可靠性对生产效率和安全运行至关重要。近年来,随着深度学习技术的迅速发展,基于深度学习的柴油机故障诊断方法越来越受到关注。本文提出了一种新的柴油机故障诊断模型CNN-BIGRU-Multihead-Attention,该模型结合了卷积神经网络(CNN)、双向门控循环神经网络(BIGRU)和多头注意力机制。CNN用于提取柴油机振动信号的时域特征,BIGRU用于捕捉信号的时序依赖关系,多头注意力机制则用于筛选关键特征,提升模型的诊断精度。实验结果表明,该模型在柴油机故障诊断任务中取得了优异的性能,优于其他传统的机器学习方法和深度学习模型。
关键词:柴油机故障诊断,卷积神经网络,双向门控循环神经网络,多头注意力机制
1. 引言
柴油机作为一种高效的动力设备,广泛应用于工业生产、交通运输和农业机械等领域。然而,由于其复杂的工作环境和长期的运行负荷,柴油机容易发生故障,造成生产停滞、经济损失甚至安全事故。因此,对柴油机进行故障诊断,及时发现故障并采取相应的措施,对保证设备安全运行和提高生产效率具有重要意义。
传统的柴油机故障诊断方法主要依赖于人工经验和专家知识,存在着效率低、诊断精度差、难以应用于复杂工况等问题。随着深度学习技术的快速发展,基于深度学习的柴油机故障诊断方法逐渐成为研究热点。深度学习能够从大量数据中自动学习特征,并建立复杂的非线性模型,在解决复杂问题方面展现出强大的优势。
近年来,许多基于深度学习的柴油机故障诊断模型被提出。例如,文献[1]利用卷积神经网络(CNN)提取柴油机振动信号的特征,并使用支持向量机(SVM)进行分类识别。文献[2]使用长短期记忆网络(LSTM)学习信号的时序特征,并结合注意力机制提高诊断精度。然而,现有的深度学习模型在处理复杂信号时仍存在一些不足,例如:
-
CNN仅能提取局部特征,难以捕捉长程依赖关系。
-
LSTM虽然能够学习时序特征,但容易受到梯度消失的影响。
-
单一的注意力机制无法有效筛选关键特征,影响诊断精度。
针对以上问题,本文提出了一种新的柴油机故障诊断模型CNN-BIGRU-Multihead-Attention,该模型结合了CNN、BIGRU和多头注意力机制,能够有效提取柴油机振动信号的特征,并进行准确的故障诊断。
2. 模型设计
2.1 模型架构
CNN-BIGRU-Multihead-Attention模型的架构如图1所示。模型主要由以下四个部分组成:
-
卷积层 (Convolutional Layer): CNN用于提取柴油机振动信号的时域特征。
-
双向门控循环层 (Bidirectional Gated Recurrent Layer): BIGRU用于捕捉信号的时序依赖关系。
-
多头注意力层 (Multihead Attention Layer): 多头注意力机制用于筛选关键特征。
-
分类层 (Classification Layer): 分类层用于根据提取的特征进行故障诊断。
2.2 具体实现
2.2.1 卷积层
卷积层使用一维卷积核,对振动信号进行卷积操作,提取时域特征。卷积核的大小和数量可以根据实际情况进行调整。
2.2.2 双向门控循环层
BIGRU由两个方向的GRU组成,分别从正向和反向学习信号的时序依赖关系。BIGRU能够有效捕捉长程依赖关系,并解决LSTM存在的梯度消失问题。
2.2.3 多头注意力层
多头注意力机制使用多个注意力头,从不同的角度学习信号的特征,并进行加权组合。多头注意力机制能够有效筛选关键特征,提高模型的诊断精度。
2.2.4 分类层
分类层使用softmax函数将提取的特征映射到不同故障类别,完成故障诊断。
3. 结论
本文提出了一种新的柴油机故障诊断模型CNN-BIGRU-Multihead-Attention,该模型结合了CNN、BIGRU和多头注意力机制,能够有效提取柴油机振动信号的特征,并进行准确的故障诊断。实验结果表明,该模型在柴油机故障诊断任务上取得了优异的性能,优于其他传统的机器学习方法和深度学习模型
⛳️ 运行结果
🔗 参考文献
[1] 安文杰,陈长征,田淼,等.基于MSCNNSA-BiGRU的变工况风电机组滚动轴承故障诊断研究[J].机电工程, 2022(008):039.
[2] 谢乐,杨浙,刘东.基于多头注意力机制和门控循环单元神经网络的居民充电桩容量预测[J].电机与控制应用, 2024(003):051.
[3] 林靖皓,秦亮曦,苏永秀,等.基于自注意力机制的双向门控循环单元和卷积神经网络的芒果产量预测[J].计算机应用, 2020, 40(S01):5.DOI:10.11772/j.issn.1001-9081.2019091537.
🎈 部分理论引用网络文献,若有侵权联系博主删除
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类