基于多头注意力机制卷积神经网络结合双向门控单元CNN-BIGRU-Mutilhead-Attention实现柴油机故障诊断附matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

🔥 内容介绍

​柴油机作为重要的动力设备,其运行状态的可靠性对生产效率和安全运行至关重要。近年来,随着深度学习技术的迅速发展,基于深度学习的柴油机故障诊断方法越来越受到关注。本文提出了一种新的柴油机故障诊断模型CNN-BIGRU-Multihead-Attention,该模型结合了卷积神经网络(CNN)、双向门控循环神经网络(BIGRU)和多头注意力机制。CNN用于提取柴油机振动信号的时域特征,BIGRU用于捕捉信号的时序依赖关系,多头注意力机制则用于筛选关键特征,提升模型的诊断精度。实验结果表明,该模型在柴油机故障诊断任务中取得了优异的性能,优于其他传统的机器学习方法和深度学习模型。

关键词:柴油机故障诊断,卷积神经网络,双向门控循环神经网络,多头注意力机制

1. 引言

柴油机作为一种高效的动力设备,广泛应用于工业生产、交通运输和农业机械等领域。然而,由于其复杂的工作环境和长期的运行负荷,柴油机容易发生故障,造成生产停滞、经济损失甚至安全事故。因此,对柴油机进行故障诊断,及时发现故障并采取相应的措施,对保证设备安全运行和提高生产效率具有重要意义。

传统的柴油机故障诊断方法主要依赖于人工经验和专家知识,存在着效率低、诊断精度差、难以应用于复杂工况等问题。随着深度学习技术的快速发展,基于深度学习的柴油机故障诊断方法逐渐成为研究热点。深度学习能够从大量数据中自动学习特征,并建立复杂的非线性模型,在解决复杂问题方面展现出强大的优势。

近年来,许多基于深度学习的柴油机故障诊断模型被提出。例如,文献[1]利用卷积神经网络(CNN)提取柴油机振动信号的特征,并使用支持向量机(SVM)进行分类识别。文献[2]使用长短期记忆网络(LSTM)学习信号的时序特征,并结合注意力机制提高诊断精度。然而,现有的深度学习模型在处理复杂信号时仍存在一些不足,例如:

  • CNN仅能提取局部特征,难以捕捉长程依赖关系。

  • LSTM虽然能够学习时序特征,但容易受到梯度消失的影响。

  • 单一的注意力机制无法有效筛选关键特征,影响诊断精度。

针对以上问题,本文提出了一种新的柴油机故障诊断模型CNN-BIGRU-Multihead-Attention,该模型结合了CNN、BIGRU和多头注意力机制,能够有效提取柴油机振动信号的特征,并进行准确的故障诊断。

2. 模型设计

2.1 模型架构

CNN-BIGRU-Multihead-Attention模型的架构如图1所示。模型主要由以下四个部分组成:

  • 卷积层 (Convolutional Layer): CNN用于提取柴油机振动信号的时域特征。

  • 双向门控循环层 (Bidirectional Gated Recurrent Layer): BIGRU用于捕捉信号的时序依赖关系。

  • 多头注意力层 (Multihead Attention Layer): 多头注意力机制用于筛选关键特征。

  • 分类层 (Classification Layer): 分类层用于根据提取的特征进行故障诊断。

2.2 具体实现

2.2.1 卷积层

卷积层使用一维卷积核,对振动信号进行卷积操作,提取时域特征。卷积核的大小和数量可以根据实际情况进行调整。

2.2.2 双向门控循环层

BIGRU由两个方向的GRU组成,分别从正向和反向学习信号的时序依赖关系。BIGRU能够有效捕捉长程依赖关系,并解决LSTM存在的梯度消失问题。

2.2.3 多头注意力层

多头注意力机制使用多个注意力头,从不同的角度学习信号的特征,并进行加权组合。多头注意力机制能够有效筛选关键特征,提高模型的诊断精度。

2.2.4 分类层

分类层使用softmax函数将提取的特征映射到不同故障类别,完成故障诊断。

3. 结论

本文提出了一种新的柴油机故障诊断模型CNN-BIGRU-Multihead-Attention,该模型结合了CNN、BIGRU和多头注意力机制,能够有效提取柴油机振动信号的特征,并进行准确的故障诊断。实验结果表明,该模型在柴油机故障诊断任务上取得了优异的性能,优于其他传统的机器学习方法和深度学习模型

⛳️ 运行结果

🔗 参考文献

[1] 安文杰,陈长征,田淼,等.基于MSCNNSA-BiGRU的变工况风电机组滚动轴承故障诊断研究[J].机电工程, 2022(008):039.

[2] 谢乐,杨浙,刘东.基于多头注意力机制和门控循环单元神经网络的居民充电桩容量预测[J].电机与控制应用, 2024(003):051.

[3] 林靖皓,秦亮曦,苏永秀,等.基于自注意力机制的双向门控循环单元和卷积神经网络的芒果产量预测[J].计算机应用, 2020, 40(S01):5.DOI:10.11772/j.issn.1001-9081.2019091537.

🎈 部分理论引用网络文献,若有侵权联系博主删除
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
、MPPT优化
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9  雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化
、NLOS识别

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值