✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
本文研究了一种基于旋特征线法的超声速静压探针,并通过数值模拟,对该探针在超声速气流中的流场进行了分析,获得了其流线图、压力云图、速度云图和马赫数云图。结果表明,该探针能够准确地测量超声速气流中的静压,并且其设计能够有效地减小探针对气流的干扰。该研究为超声速静压探针的设计提供了一种新的思路,并为超声速气流测量技术的进一步发展奠定了基础。
1. 引言
在航空航天、气象学、工业生产等领域,对超声速气流的测量至关重要。静压是气流的重要参数之一,其测量精度直接影响到对气流状态的判断和分析。传统静压探针的设计通常基于圆柱形结构,这种结构在超声速气流中会产生较大的流动干扰,导致测量结果不准确。
近年来,旋特征线法在超声速气流测量领域得到了广泛的应用。该方法通过设计特定形状的探针,利用气流绕过探针时产生的旋涡来获取气流信息,从而实现对气流参数的高精度测量。本文基于旋特征线法,设计了一种超声速静压探针,并利用数值模拟对其进行了分析。
2. 探针设计及数值模拟方法
2.1 探针设计
本文设计的超声速静压探针由两个主要部分组成:
-
**旋涡发生器:**由多个圆形凹槽构成,用于产生旋涡。凹槽的尺寸和形状经过优化设计,以确保其能够在超声速气流中产生稳定的旋涡。
-
**压力测量腔:**位于探针的尾部,用于测量静压。该腔体的形状经过优化设计,以确保其能够准确地反映气流的静压。
2.2 数值模拟方法
本文采用基于有限体积法的商业软件 ANSYS Fluent 进行数值模拟。计算域采用三维结构,并对边界条件进行了设置:
-
**入口边界:**设置超声速气流的流速、压力和温度。
-
**出口边界:**设置压力出口。
-
**探针表面:**设置无滑移边界条件。
3. 数值模拟结果及分析
3.1 流线图
图1展示了超声速气流绕过探针时的流线图。从图中可以看出,旋涡发生器成功地产生了一对稳定的旋涡,这两个旋涡沿着探针表面流动,并在探针的尾部汇合。
3.2 压力云图
图2展示了探针周围的压力云图。从图中可以看出,探针的头部和旋涡发生器区域压力较高,而探针的尾部压力较低。由于旋涡的产生,探针周围的压力分布发生了变化,但总体来说,探针对气流的干扰较小。
3.3 速度云图
图3展示了探针周围的速度云图。从图中可以看出,气流在绕过探针时速度发生了变化,但在探针的尾部,气流速度恢复到了接近于来流速度的状态,这说明探针对气流的影响有限。
3.4 马赫数云图
图4展示了探针周围的马赫数云图。从图中可以看出,探针周围的马赫数分布呈现出明显的非均匀性。由于旋涡的产生,探针周围出现了马赫数较低的区域,但总体来说,探针对气流的马赫数影响较小。
4. 结论
本文设计了一种基于旋特征线法的超声速静压探针,并利用数值模拟对其进行了分析。结果表明,该探针能够准确地测量超声速气流中的静压,并且其设计能够有效地减小探针对气流的干扰。该研究为超声速静压探针的设计提供了一种新的思路,并为超声速气流测量技术的进一步发展奠定了基础。
5. 未来工作展望
-
进一步优化探针的设计,使其能够在更宽的马赫数范围内实现高精度测量。
-
研究探针在不同来流条件下的性能,例如不同气流速度、不同气流温度、不同气流密度等。
-
将该探针应用到实际工程中,并进行实验验证。
⛳️ 运行结果
正在上传…重新上传取消
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
2 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类