✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
格子玻尔兹曼方法 (Lattice Boltzmann Method, LBM) 作为一种介观模拟方法,在多相流模拟中展现出独特的优势。近年来,水平集方法 (Level Set Method, LSM) 凭借其在界面追踪方面的优势,在 LBM 多相流模拟中得到了广泛应用。本文将着重探讨基于水平集方法的单场格子玻尔兹曼多相流模拟。首先介绍 LBM 和 LSM 的基本原理,并阐述两者结合的优势;随后讨论几种常用的 LBM-LSM 多相流模型,包括色散力模型、表面张力模型和浸没边界力模型;最后分析 LBM-LSM 方法的优缺点,并展望其未来的发展方向。
引言
多相流是指两种或两种以上不同相态流体之间的流动,广泛存在于自然界和工程领域,如气液两相流、液液两相流、固液两相流等。由于多相流的复杂性,对这类流动的研究一直是流体力学领域的核心问题。传统的多相流模拟方法,如有限体积法和有限元法,在处理界面复杂、流动瞬态、相变等问题时往往面临挑战。
格子玻尔兹曼方法 (LBM) 作为一种介观模拟方法,通过模拟流体微观粒子的运动来计算宏观流场信息。LBM 的优势在于其简单易懂的算法结构、能够自然地处理复杂边界、易于并行化等,在多相流模拟中展现出独特的优势。然而,LBM 在处理界面追踪问题方面存在局限性。
水平集方法 (LSM) 是一种能够有效追踪流体界面演化的数值方法。LSM 通过引入一个光滑函数来描述界面,并利用 Hamilton-Jacobi 方程来更新界面位置。LSM 的优势在于能够精确地追踪复杂界面,并能够避免界面拓扑变化带来的困难。
近年来,将 LSM 与 LBM 结合,利用 LSM 的界面追踪优势来解决 LBM 中的界面问题,成为 LBM 多相流模拟领域的研究热点。这种方法被称为 LBM-LSM 方法,能够有效解决 LBM 在界面追踪方面存在的不足,并为多相流模拟提供了一种更加精确和高效的工具。
LBM 和 LSM 的基本原理
1. 格子玻尔兹曼方法 (LBM)
LBM 是基于 Boltzmann 方程的介观模拟方法,通过模拟流体微观粒子的运动来计算宏观流场信息。LBM 的核心思想是将流体域离散化为一系列格子节点,并在每个节点上定义一组离散的速度方向,称为“速度集合”。每个节点上的流体粒子沿着不同的速度方向运动,并根据碰撞规则进行相互碰撞。LBM 的计算过程包括两个步骤:
-
碰撞步骤: 流体粒子在每个节点上进行碰撞,并根据碰撞规则更新每个速度方向上的粒子分布函数。
-
流淌步骤: 每个节点上的粒子沿着其对应的速度方向流淌到相邻节点。
LBM 的优点在于其简单易懂的算法结构、能够自然地处理复杂边界、易于并行化等,在多相流模拟中展现出独特的优势。
2. 水平集方法 (LSM)
LSM 是一种用于追踪流体界面演化的数值方法。LSM 通过引入一个光滑函
LBM-LSM 多相流模型
将 LBM 和 LSM 结合,利用 LSM 的界面追踪优势来解决 LBM 中的界面问题,成为 LBM 多相流模拟领域的研究热点。这种方法被称为 LBM-LSM 方法,常用的 LBM-LSM 多相流模型包括以下几种:
1. 色散力模型
色散力模型是基于流体之间的相互作用力来模拟界面行为的模型。在 LBM 中,色散力通常通过对流体密度进行修改来实现。例如,Cahn-Hilliard 模型通过引入一个浓度场来描述流体混合程度,并通过色散力项来模拟界面张力。
2. 表面张力模型
表面张力模型是通过直接在界面上施加表面张力来模拟界面行为的模型。在 LBM 中,表面张力通常通过添加一个额外的力项来实现。例如,Shan-Chen 模型通过在格子节点上添加一个相互作用力来模拟表面张力。
3. 浸没边界力模型
浸没边界力模型是通过在界面上施加一个浸没边界力来模拟界面行为的模型。在 LBM 中,浸没边界力通常通过将界面上的力分布到流体域中的格子节点上来实现。例如,IBM 模型通过在界面上施加一个拉普拉斯力来模拟表面张力。
LBM-LSM 方法的优缺点
LBM-LSM 方法在多相流模拟中具有以下优点:
-
精确的界面追踪: LSM 能够精确地追踪复杂界面,并能够避免界面拓扑变化带来的困难。
-
高效的计算效率: LBM-LSM 方法的计算效率较高,特别是对于并行化计算。
-
能够处理复杂边界: LBM 能够自然地处理复杂边界,而 LSM 在处理复杂边界时也比较方便。
LBM-LSM 方法也存在一些缺点:
-
模型复杂度: LBM-LSM 方法的模型比较复杂,需要对 LBM 和 LSM 进行深入了解才能进行应用。
-
数值稳定性: LBM-LSM 方法的数值稳定性受到 LSM 中的界面重构方法的影响。
-
计算成本: 由于 LSM 的计算量较大,LBM-LSM 方法的计算成本比传统的 LBM 方法更高。
未来展望
LBM-LSM 方法在多相流模拟中具有巨大的应用潜力,其未来发展方向包括以下几个方面:
-
开发更高效的 LBM-LSM 模型: 研究开发更高效的 LBM-LSM 模型,以提高计算效率,降低计算成本。
-
研究 LBM-LSM 方法在不同多相流体系中的应用: 将 LBM-LSM 方法应用于气液两相流、液液两相流、固液两相流等不同的多相流体系,并进行验证和推广。
-
结合机器学习技术: 将机器学习技术引入 LBM-LSM 方法,以提高模型精度和预测能力。
结论
基于水平集方法的单场格子玻尔兹曼多相流模拟 (LBM-LSM) 是一种能够有效解决 LBM 在界面追踪方面不足的数值方法。该方法能够精确地追踪复杂界面,并能够避免界面拓扑变化带来的困难。LBM-LSM 方法在多相流模拟中具有巨大的应用潜力,其未来发展方向包括开发更高效的模型、研究在不同体系中的应用以及结合机器学习技术等。相信 LBM-LSM 方法将在未来多相流模拟领域发挥更加重要的作用。
⛳️ 运行结果
🔗 参考文献
[1] G. Thömmes, J. Becker, M. Junk, A.K. Vaikuntam, D. Kehrwald, A. Klar, K. Steiner, A. Wiegmann, A lattice Boltzmann method for immiscible multiphase flow simulations using the level set method, J. Comput. Phys. 228 (2009), 1139-1156.
🎈 部分理论引用网络文献,若有侵权联系博主删除
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
2 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类