【光伏预测】基于金豺优化算法GJO优化高斯过程回归GPR实现光伏多输入单输出预测附Matlab代码

 

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

🔥 内容介绍

摘要

光伏发电作为一种清洁可再生能源,在全球能源结构转型中扮演着越来越重要的角色。然而,光伏发电受天气因素影响较大,具有显著的随机性和波动性,准确预测光伏发电量对提高光伏电站的经济效益和稳定电力系统运行至关重要。本文提出了一种基于金豺优化算法 (GJO) 优化高斯过程回归 (GPR) 的光伏发电量多输入单输出预测模型。该模型利用GJO算法优化GPR模型中的超参数,并结合多输入变量信息,以实现更加准确和可靠的光伏发电量预测。

1. 绪论

近年来,随着全球能源结构转型,光伏发电技术得到了快速发展,其发电量也呈现出快速增长趋势。然而,光伏发电具有显著的随机性和波动性,其发电量受气象条件,如日照强度、气温、风速等因素的影响较大。因此,准确预测光伏发电量是提高光伏电站经济效益和稳定电力系统运行的关键。

目前,常用的光伏发电量预测方法主要包括统计模型、机器学习模型和混合模型。其中,高斯过程回归 (GPR) 作为一种非参数回归方法,具有处理非线性问题的能力,近年来在光伏发电量预测领域得到了广泛应用。然而,GPR模型的性能很大程度上取决于超参数的选择。

为了提高GPR模型的预测精度,本文提出了一种基于金豺优化算法 (GJO) 优化GPR模型的光伏发电量预测方法。GJO算法是一种新兴的元启发式优化算法,具有收敛速度快、寻优效率高、不易陷入局部最优等优点。利用GJO算法优化GPR模型中的超参数,可以有效提高模型的泛化能力,从而提高光伏发电量预测的准确性。

2. 光伏发电量预测模型

2.1 高斯过程回归 (GPR)

高斯过程回归 (GPR) 是一种基于概率的非参数回归方法,它假设目标变量服从一个高斯过程先验分布。GPR模型通过学习训练数据,得到一个高斯过程的后验分布,从而对未知数据进行预测。

GPR模型的预测公式如下:

𝑓^(𝑥∗)=𝜇∗+𝑘(𝑥∗,𝑋)(𝐾(𝑋,𝑋)+𝜎2𝐼)−1(𝑦−𝜇)f^​(x∗​)=μ∗​+k(x∗​,X)(K(X,X)+σ2I)−1(y−μ)

其中,𝑥∗x∗​ 表示待预测点,𝑋X 表示训练数据输入矩阵,𝑦y 表示训练数据输出向量,𝜇μ 表示目标变量的先验均值,𝑘(𝑥∗,𝑋)k(x∗​,X) 表示待预测点与训练数据的协方差矩阵,𝐾(𝑋,𝑋)K(X,X) 表示训练数据之间的协方差矩阵,𝜎2σ2 表示噪声方差,𝐼I 表示单位矩阵。

GPR模型的关键在于选择合适的协方差函数 𝑘(𝑥∗,𝑋)k(x∗​,X),它反映了输入变量之间的相关性。常用的协方差函数包括平方指数核函数、马特恩核函数等。

2.2 金豺优化算法 (GJO)

金豺优化算法 (GJO) 是一种新型的元启发式优化算法,其灵感来源于金豺群体的觅食行为。GJO算法利用金豺个体之间的社会互动和个体探索能力,来寻找全局最优解。

GJO算法的步骤如下:

  1. 初始化金豺群体,并随机分配每个金豺的位置。
  2. 计算每个金豺的目标函数值。
  3. 更新每个金豺的位置,并根据其目标函数值进行排名。
  4. 重复步骤2-3,直到满足停止条件。

2.3 基于GJO优化的GPR模型

本文提出了一种基于GJO优化GPR模型的光伏发电量预测方法。该方法利用GJO算法优化GPR模型中的超参数,以提高模型的预测精度。具体步骤如下:

  1. 收集光伏发电站的历史数据,包括发电量、日照强度、气温、风速等信息。
  2. 利用GJO算法优化GPR模型中的超参数,例如协方差函数参数、噪声方差等。
  3. 训练优化后的GPR模型,并利用训练后的模型进行光伏发电量预测。

    结论

    本文提出了一种基于金豺优化算法 (GJO) 优化高斯过程回归 (GPR) 的光伏发电量多输入单输出预测模型。该模型利用GJO算法优化GPR模型中的超参数,并结合多输入变量信息,以实现更加准确和可靠的光伏发电量预测。实验结果表明,该模型具有良好的预测精度,为光伏电站的经济效益和稳定电力系统运行提供了有力支持。

    未来展望

    未来,可以进一步研究以下方面:

  4. 探索其他更有效的优化算法来优化GPR模型的超参数,例如粒子群算法、差分进化算法等。
  5. 研究如何将深度学习技术融入GPR模型,以提高模型的非线性拟合能力。
  6. 研究如何将多目标优化方法应用于光伏发电量预测问题,以同时考虑预测精度和计算效率。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值