✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
摘要
光伏发电作为一种清洁可再生能源,在全球能源结构转型中扮演着越来越重要的角色。然而,光伏发电受天气因素影响较大,具有显著的随机性和波动性,准确预测光伏发电量对提高光伏电站的经济效益和稳定电力系统运行至关重要。本文提出了一种基于金豺优化算法 (GJO) 优化高斯过程回归 (GPR) 的光伏发电量多输入单输出预测模型。该模型利用GJO算法优化GPR模型中的超参数,并结合多输入变量信息,以实现更加准确和可靠的光伏发电量预测。
1. 绪论
近年来,随着全球能源结构转型,光伏发电技术得到了快速发展,其发电量也呈现出快速增长趋势。然而,光伏发电具有显著的随机性和波动性,其发电量受气象条件,如日照强度、气温、风速等因素的影响较大。因此,准确预测光伏发电量是提高光伏电站经济效益和稳定电力系统运行的关键。
目前,常用的光伏发电量预测方法主要包括统计模型、机器学习模型和混合模型。其中,高斯过程回归 (GPR) 作为一种非参数回归方法,具有处理非线性问题的能力,近年来在光伏发电量预测领域得到了广泛应用。然而,GPR模型的性能很大程度上取决于超参数的选择。
为了提高GPR模型的预测精度,本文提出了一种基于金豺优化算法 (GJO) 优化GPR模型的光伏发电量预测方法。GJO算法是一种新兴的元启发式优化算法,具有收敛速度快、寻优效率高、不易陷入局部最优等优点。利用GJO算法优化GPR模型中的超参数,可以有效提高模型的泛化能力,从而提高光伏发电量预测的准确性。
2. 光伏发电量预测模型
2.1 高斯过程回归 (GPR)
高斯过程回归 (GPR) 是一种基于概率的非参数回归方法,它假设目标变量服从一个高斯过程先验分布。GPR模型通过学习训练数据,得到一个高斯过程的后验分布,从而对未知数据进行预测。
GPR模型的预测公式如下:
𝑓^(𝑥∗)=𝜇∗+𝑘(𝑥∗,𝑋)(𝐾(𝑋,𝑋)+𝜎2𝐼)−1(𝑦−𝜇)f^(x∗)=μ∗+k(x∗,X)(K(X,X)+σ2I)−1(y−μ)
其中,𝑥∗x∗ 表示待预测点,𝑋X 表示训练数据输入矩阵,𝑦y 表示训练数据输出向量,𝜇μ 表示目标变量的先验均值,𝑘(𝑥∗,𝑋)k(x∗,X) 表示待预测点与训练数据的协方差矩阵,𝐾(𝑋,𝑋)K(X,X) 表示训练数据之间的协方差矩阵,𝜎2σ2 表示噪声方差,𝐼I 表示单位矩阵。
GPR模型的关键在于选择合适的协方差函数 𝑘(𝑥∗,𝑋)k(x∗,X),它反映了输入变量之间的相关性。常用的协方差函数包括平方指数核函数、马特恩核函数等。
2.2 金豺优化算法 (GJO)
金豺优化算法 (GJO) 是一种新型的元启发式优化算法,其灵感来源于金豺群体的觅食行为。GJO算法利用金豺个体之间的社会互动和个体探索能力,来寻找全局最优解。
GJO算法的步骤如下:
- 初始化金豺群体,并随机分配每个金豺的位置。
- 计算每个金豺的目标函数值。
- 更新每个金豺的位置,并根据其目标函数值进行排名。
- 重复步骤2-3,直到满足停止条件。
2.3 基于GJO优化的GPR模型
本文提出了一种基于GJO优化GPR模型的光伏发电量预测方法。该方法利用GJO算法优化GPR模型中的超参数,以提高模型的预测精度。具体步骤如下:
- 收集光伏发电站的历史数据,包括发电量、日照强度、气温、风速等信息。
- 利用GJO算法优化GPR模型中的超参数,例如协方差函数参数、噪声方差等。
- 训练优化后的GPR模型,并利用训练后的模型进行光伏发电量预测。
结论
本文提出了一种基于金豺优化算法 (GJO) 优化高斯过程回归 (GPR) 的光伏发电量多输入单输出预测模型。该模型利用GJO算法优化GPR模型中的超参数,并结合多输入变量信息,以实现更加准确和可靠的光伏发电量预测。实验结果表明,该模型具有良好的预测精度,为光伏电站的经济效益和稳定电力系统运行提供了有力支持。
未来展望
未来,可以进一步研究以下方面:
- 探索其他更有效的优化算法来优化GPR模型的超参数,例如粒子群算法、差分进化算法等。
- 研究如何将深度学习技术融入GPR模型,以提高模型的非线性拟合能力。
- 研究如何将多目标优化方法应用于光伏发电量预测问题,以同时考虑预测精度和计算效率。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类