多重创新 基于VMD-SSA-LSSVM+LSTM多变量时间序列预测模型附Matlab代码

  ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、期刊写作与指导,代码获取、论文复现及科研仿真合作可私信或扫描文章底部二维码。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

🔥 内容介绍

多变量时间序列预测是许多领域的关键问题,例如金融、能源、交通等。近年来,深度学习技术在时间序列预测方面取得了显著进展,但仍面临着一些挑战,例如对噪声敏感、难以捕捉复杂非线性关系等。为了解决这些问题,本文提出了一种基于变分模态分解 (VMD)、奇异谱分析 (SSA) 和最小二乘支持向量机 (LSSVM) 结合长短期记忆网络 (LSTM) 的多变量时间序列预测模型 (VMD-SSA-LSSVM+LSTM)。该模型将 VMD 用于降噪和特征提取,SSA 用于提取时间序列的趋势和周期信息,LSSVM 用于建立非线性映射关系,LSTM 用于学习时间序列的长期依赖关系。最后,将所有模型输出组合起来进行最终预测。

关键词: 多变量时间序列预测,VMD,SSA,LSSVM,LSTM,Matlab

1. 引言

多变量时间序列预测是指根据多个时间序列的历史数据来预测未来的值。它在许多领域有着广泛的应用,例如股票价格预测、电力负荷预测、交通流量预测等。近年来,随着深度学习技术的发展,基于深度学习的时间序列预测模型取得了显著的进展。然而,现有的深度学习模型在处理多变量时间序列预测问题时仍然面临一些挑战:

  • 对噪声敏感: 深度学习模型通常对噪声很敏感,噪声会影响模型的训练和预测效果。

  • 难以捕捉复杂非线性关系: 多变量时间序列之间往往存在复杂的非线性关系,深度学习模型难以完全捕捉这些关系。

  • 对时间依赖关系的学习能力有限: 传统深度学习模型在学习时间序列的长期依赖关系方面存在局限性。

为了解决上述问题,本文提出了一种基于 VMD、SSA 和 LSSVM 结合 LSTM 的多变量时间序列预测模型。该模型通过将多种数据挖掘方法和深度学习技术相结合,有效地提高了多变量时间序列预测的准确性和稳定性。

2. 模型介绍

本文提出的 VMD-SSA-LSSVM+LSTM 模型主要包括以下几个步骤:

2.1 VMD 降噪和特征提取

VMD 是一种自适应信号分解方法,可以将信号分解成多个具有不同频率和带宽的本征模态函数 (IMF)。VMD 可以有效地去除时间序列中的噪声,并提取重要的特征信息。

2.2 SSA 趋势和周期信息提取

SSA 是一种非参数时间序列分析方法,可以将时间序列分解成趋势、周期和噪声等不同成分。SSA 可以有效地提取时间序列的趋势和周期信息,为预测提供更准确的输入。

2.3 LSSVM 非线性映射关系建立

LSSVM 是一种基于支持向量机的回归模型,可以有效地建立非线性映射关系。LSSVM 具有良好的泛化能力,可以有效地避免过拟合现象。

2.4 LSTM 学习时间序列的长期依赖关系

LSTM 是一种特殊的循环神经网络 (RNN),可以有效地学习时间序列的长期依赖关系。LSTM 通过门控机制,可以克服传统的 RNN 难以学习长序列信息的问题。

2.5 模型融合

最后,将 VMD、SSA 和 LSSVM 的输出作为 LSTM 的输入,利用 LSTM 的学习能力,对多变量时间序列进行最终预测。

3. 模型实现

本文采用 Matlab 语言实现 VMD-SSA-LSSVM+LSTM 模型。具体代码如下:

 

esults,train_data);
% 使用 LSTM 学习时间序列的长期依赖关系
lstm_model = fitclstm(ssa_results,train_data);
% 进行预测
predictions = predict(lstm_model,test_data);
% 计算预测误差
error = mean(abs(predictions - test_data));
% 输出结果
disp(['预测误差: ', num2str(error)]);

4. 实验结果与分析

本文使用真实世界多变量时间序列数据集进行实验,并与其他预测模型进行比较。实验结果表明,VMD-SSA-LSSVM+LSTM 模型在预测精度和稳定性方面均优于其他模型。

5. 结论

本文提出了一种基于 VMD、SSA 和 LSSVM 结合 LSTM 的多变量时间序列预测模型,该模型有效地提高了多变量时间序列预测的准确性和稳定性。该模型可以应用于金融、能源、交通等许多领域,为相关决策提供更准确的预测信息。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值