【创新】人工蜂群算法优化!ABC-CNN-LSTM-MATT多特征分类预测

✅作者简介:热爱数据处理、数学建模、算法创新的Matlab仿真开发者。

🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室

🍊个人信条:格物致知。

🔥 内容介绍

摘要: 近年来,深度学习在多特征分类预测领域取得了显著进展。卷积神经网络(CNN)、长短期记忆网络(LSTM)以及多注意力机制变换器(MATT)分别在图像特征提取、序列信息建模和全局上下文捕获方面展现出强大的能力。然而,如何有效地融合这些网络,并优化其参数以获得最佳预测性能仍然是一个挑战。本文提出了一种基于人工蜂群算法(ABC)优化CNN-LSTM-MATT模型的多特征分类预测方法,即ABC-CNN-LSTM-MATT。该方法利用ABC算法对模型超参数进行优化,包括卷积核大小、卷积层数、LSTM单元数、注意力头数等,从而提升模型的预测精度和泛化能力。通过在多个公开数据集上的实验,我们验证了ABC-CNN-LSTM-MATT方法的有效性和优越性,并对其性能进行了深入分析。

关键词: 人工蜂群算法;卷积神经网络;长短期记忆网络;多注意力机制变换器;多特征分类;预测

1. 引言

多特征分类预测问题广泛存在于各个领域,例如医学图像诊断、金融风险评估、自然语言处理等。传统的机器学习方法在处理高维、非线性、复杂的特征数据时往往效果不佳。深度学习技术的兴起为解决这些问题提供了新的途径。CNN擅长提取图像中的局部特征,LSTM能够有效地捕捉序列数据中的时序依赖关系,而MATT则能够关注输入数据中的重要信息,提升模型的表达能力。将这三种网络结合起来,可以充分利用不同类型特征的优势,提高预测精度。然而,深度学习模型的性能高度依赖于其超参数的设置。手动调整超参数费时费力,且难以找到全局最优解。

人工蜂群算法(Artificial Bee Colony, ABC)是一种基于群体智能的优化算法,具有寻优能力强、易于实现等优点。它模拟蜜蜂的觅食行为,通过迭代搜索来寻找目标函数的最优解。本文提出将ABC算法应用于CNN-LSTM-MATT模型的超参数优化,以提高其在多特征分类预测任务中的性能。

2. 方法

2.1 CNN-LSTM-MATT模型结构

本文提出的模型架构由三个主要部分组成:CNN、LSTM和MATT。

  • CNN部分: 负责提取输入图像特征。我们采用多层卷积层,结合池化层来降低维度和提取不同尺度的特征。

  • LSTM部分: 负责处理具有时间序列特征的数据。LSTM单元能够捕捉长程依赖关系,从而更好地理解序列信息。

  • MATT部分: 在LSTM输出的基础上应用MATT,学习不同特征之间的关系,增强模型对全局信息的把握。MATT采用多头注意力机制,能够同时关注多个不同的特征表示,从而提升模型的表达能力和预测精度。

这三部分通过串联的方式连接起来,CNN的输出作为LSTM的输入,LSTM的输出则作为MATT的输入。最终,MATT的输出通过全连接层进行分类。

2.2 基于ABC算法的超参数优化

ABC算法用于优化CNN-LSTM-MATT模型的超参数,包括:

  • CNN部分:卷积核大小、卷积层数、卷积核个数、激活函数等。

  • LSTM部分:LSTM单元个数、隐藏层单元个数、循环层数等。

  • MATT部分:注意力头数、隐藏层维度等。

ABC算法的具体流程如下:

  1. 初始化: 随机生成初始蜂群,每个蜂群代表一组超参数。

  2. 雇佣蜂阶段: 每个雇佣蜂在其邻域内搜索更好的解。

  3. 观察蜂阶段: 观察蜂根据雇佣蜂的搜索结果,选择更好的解。

  4. 侦察蜂阶段: 如果雇佣蜂长期未找到更好的解,则变为侦察蜂,随机生成新的解。

  5. 迭代: 重复步骤2-4,直到满足终止条件。

我们将模型的预测精度作为ABC算法的适应度函数,目标是找到使预测精度最高的超参数组合。

3. 实验与结果

我们在三个公开数据集上进行了实验,验证了ABC-CNN-LSTM-MATT方法的有效性。实验结果表明,与传统的CNN-LSTM-MATT模型以及其他优化算法(如遗传算法、粒子群算法)相比,ABC-CNN-LSTM-MATT方法在预测精度和泛化能力方面均有显著提高。我们详细分析了不同超参数组合对模型性能的影响,并探讨了ABC算法在模型优化中的优势。

4. 结论

本文提出了一种基于ABC算法优化的CNN-LSTM-MATT多特征分类预测方法。该方法通过ABC算法有效地优化了模型的超参数,从而提高了模型的预测精度和泛化能力。实验结果验证了该方法的有效性和优越性。未来研究将着重于进一步改进ABC算法,以及探索其他更有效的深度学习模型和优化算法,以解决更复杂的多特征分类预测问题。

5. 未来工作

未来的研究方向包括:

  • 探讨更先进的深度学习模型,例如Transformer等,以进一步提高模型的表达能力。

  • 结合其他优化算法,例如改进的ABC算法或混合算法,以提高优化效率。

  • 研究如何处理不平衡的数据集,提高模型在不同类别数据上的预测性能。

  • 将该方法应用于更广泛的应用场景,例如医疗影像分析、金融风险预测等。

⛳️ 运行结果

🔗 参考文献

[1]李萌,宗学军,连莲,等.基于CNN-ABC-BiGRU的火电厂数据分析与应用研究[J].电子设计工程, 2023, 31(22):11-15.DOI:10.14022/j.issn1674-6236.2023.22.003.

🎈 部分理论引用网络文献,若有侵权联系博主删除

博客擅长领域:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇



 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值