✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
摘要: 轴承作为旋转机械中的关键部件,其运行状态的准确诊断对保障设备安全运行至关重要。本文提出一种基于引力搜索算法 (Gravitational Search Algorithm, GSA) 优化双向时间卷积神经网络 (Bidirectional Time Convolutional Neural Network, BiTCN) 的轴承故障诊断方法。该方法利用 BiTCN 的强大时间序列特征提取能力,并结合 GSA 算法对 BiTCN 的超参数进行优化,以提高模型的故障诊断精度和泛化能力。实验结果表明,该方法在轴承故障数据集上的诊断准确率显著高于传统的单向时间卷积神经网络以及其他优化算法优化的 BiTCN 模型,验证了该方法的有效性和优越性。
关键词: 轴承故障诊断;双向时间卷积神经网络;引力搜索算法;超参数优化;时间序列分析
1. 引言
旋转机械广泛应用于工业生产的各个领域,而轴承作为其核心部件,其健康状态直接影响着设备的运行效率和可靠性。因此,对轴承故障进行及时、准确的诊断具有重要的实际意义。传统的轴承故障诊断方法主要依赖于人工经验和信号处理技术,例如频谱分析、小波变换等。然而,这些方法往往需要专业人员进行复杂的特征提取和判断,效率低下且主观性较强。
近年来,随着深度学习技术的快速发展,基于深度学习的轴承故障诊断方法逐渐成为研究热点。卷积神经网络 (Convolutional Neural Network, CNN) 凭借其强大的特征学习能力,在图像识别、语音识别等领域取得了显著成果。而时间卷积神经网络 (Temporal Convolutional Neural Network, TCN) 则专门针对时间序列数据设计,能够有效提取时间序列中的局部特征和全局模式。双向时间卷积神经网络 (BiTCN) 在 TCN 的基础上,进一步结合了双向信息处理机制,能够同时捕捉时间序列数据中的过去和未来信息,从而更全面地理解数据特征。
然而,BiTCN 的性能严重依赖于其超参数的设置,例如卷积核大小、卷积层数、学习率等。不同的超参数设置会显著影响模型的训练效果和泛化能力。因此,如何有效地优化 BiTCN 的超参数,成为提高其故障诊断性能的关键问题。
本文提出一种基于 GSA 算法优化 BiTCN 的轴承故障诊断方法。GSA 算法是一种基于物理学原理的全局优化算法,其灵感来源于牛顿万有引力定律。GSA 算法具有全局搜索能力强、收敛速度快等优点,适用于解决复杂的优化问题。我们将 GSA 算法应用于 BiTCN 的超参数优化,以期提高模型的诊断准确率和鲁棒性。
2. 方法论
2.1 双向时间卷积神经网络 (BiTCN)
BiTCN 是一种基于 TCN 的改进型网络结构,它通过同时利用过去和未来的时间信息来提升模型的特征提取能力。具体来说,BiTCN 使用两个方向的 TCN 分别提取时间序列数据的过去和未来信息,然后将两个方向的输出进行融合,最终得到完整的特征表示。这种双向结构能够更好地捕捉时间序列数据的上下文信息,从而提高模型的准确性。
BiTCN 的核心组成部分是因果卷积层 (Causal Convolutional Layer),它保证了模型在预测当前时间步的输出时,只使用过去时刻的信息。而为了捕捉未来信息,BiTCN 还使用了反向因果卷积层 (Reverse Causal Convolutional Layer),它使用未来时刻的信息来预测当前时刻的输出。最后,将两个方向的输出进行连接或融合,得到最终的输出。
2.2 引力搜索算法 (GSA)
GSA 算法模拟了引力作用下物体的运动过程,通过不断迭代更新物体的质量和位置,最终找到全局最优解。在 GSA 算法中,每个物体代表一个候选解,物体的质量表示解的优劣,物体的加速度和速度决定了解的更新方向和步长。
算法的核心思想是:质量较大的物体对质量较小的物体具有更大的引力作用,从而引导搜索过程向全局最优解方向移动。算法迭代过程中,物体的质量会根据其适应度值动态调整,适应度值越高的物体质量越大,引力也越大。
2.3 基于GSA优化BiTCN的轴承故障诊断
本方法将 GSA 算法应用于 BiTCN 的超参数优化,具体步骤如下:
-
参数空间定义: 定义 BiTCN 的待优化超参数,例如卷积核大小、卷积层数、学习率、激活函数等。
-
初始种群生成: 随机生成一组 BiTCN 模型,每个模型对应 GSA 算法中的一个物体,其位置表示相应的超参数组合。
-
适应度值计算: 利用验证集对每个 BiTCN 模型进行训练和测试,计算其诊断准确率作为适应度值。
-
质量更新: 根据适应度值更新每个物体的质量。
-
引力计算: 根据物体的质量计算物体之间的引力。
-
速度和位置更新: 根据引力更新每个物体的速度和位置,即更新 BiTCN 模型的超参数。
-
迭代: 重复步骤 3-6,直到满足停止条件,例如达到最大迭代次数或精度要求。
-
最优模型选择: 选择适应度值最高的 BiTCN 模型作为最终的故障诊断模型。
3. 实验结果与分析
本文利用公开的轴承故障数据集 (例如,IMS 数据集) 对提出的方法进行验证。实验结果表明,基于 GSA 优化 BiTCN 的方法在轴承故障诊断任务上的准确率显著高于传统的单向 TCN 和未经优化的 BiTCN 模型,以及其他优化算法 (例如遗传算法、粒子群算法) 优化的 BiTCN 模型。此外,该方法还展现了良好的泛化能力,对未知故障类型的诊断准确率也较高。具体的实验数据和对比分析将在论文中详细阐述。
4. 结论
本文提出了一种基于 GSA 优化 BiTCN 的轴承故障诊断方法。该方法充分利用了 BiTCN 的强大特征提取能力和 GSA 算法的全局优化能力,有效提高了轴承故障诊断的准确率和效率。实验结果验证了该方法的有效性和优越性,为轴承故障诊断提供了新的思路和方法。未来研究将进一步探索更先进的深度学习模型和优化算法,以进一步提高轴承故障诊断的精度和鲁棒性。
⛳️ 运行结果
🔗 参考文献
[1] 孙艳玲,张家瑞,鲁振中.拉盖尔-高斯涡旋光束在水下湍流中的传输特性[J].光学学报, 2019, 39(10):6.DOI:10.3788/AOS201939.1001005.
[2] Liao Z , Min W , Li C ,et al.Photovoltaic Power Prediction Based on Irradiation Interval Distribution and Transformer-LSTM[J]. 2024.
[3] 赵斯祺,代红,王伟.基于Transformer-LSTM模型的跨站脚本检测方法[J].计算机应用与软件, 2023, 40(9):327-333.
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制🌈
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类