【智能优化算法】混合灰狼和布谷鸟搜索优化算法 附Matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,求助可私信。

🔥 内容介绍

智能优化算法作为一种解决复杂优化问题的有效工具,在各个领域得到了广泛应用。本文提出一种混合灰狼和布谷鸟搜索优化算法(Hybrid Grey Wolf and Cuckoo Search Optimization Algorithm,HGCS),旨在克服传统灰狼优化算法(Grey Wolf Optimizer,GWO)和布谷鸟搜索算法(Cuckoo Search,CS)各自的局限性,提高算法的收敛速度和全局搜索能力。HGCS算法将GWO的社会等级机制和CS的莱维飞行机制相结合,在算法的不同阶段利用不同的搜索策略,以期在探索和开发能力之间取得平衡。通过对一系列标准测试函数的实验验证,结果表明HGCS算法在收敛速度、解的精度和鲁棒性方面均优于传统的GWO和CS算法,具有较强的应用潜力。

1. 引言

优化问题广泛存在于科学研究和工程实践中,其目标在于寻找能够最小化或最大化特定目标函数的变量组合。传统的数学优化方法在处理高维、非凸、多峰等复杂优化问题时往往面临挑战。为了解决这些问题,研究人员提出了各种智能优化算法。这些算法通常模拟自然界中生物的生存和进化机制,例如遗传算法(Genetic Algorithm,GA)、粒子群优化算法(Particle Swarm Optimization,PSO)以及本文关注的灰狼优化算法和布谷鸟搜索算法。

灰狼优化算法是由Mirjalili等于2014年提出的一种基于灰狼捕食行为的群体智能优化算法。GWO算法模拟了灰狼的社会等级制度和捕食策略,通过模拟领导狼(α狼)、次级狼(β狼)和普通狼(δ狼)的行为来指导搜索过程。GWO算法具有结构简单、参数少、易于实现等优点,在许多领域得到了成功应用。然而,GWO算法也存在一些不足之处,例如在迭代初期易陷入局部最优、收敛速度较慢等问题。

布谷鸟搜索算法是由Yang和Deb于2009年提出的一种基于布谷鸟寄生行为的元启发式优化算法。CS算法模拟了布谷鸟的莱维飞行搜索方式和鸟巢的竞争机制,具有较强的全局搜索能力。然而,CS算法在迭代后期往往收敛速度较慢,且容易出现搜索效率低下的情况。

为了克服GWO和CS算法各自的局限性,本文提出一种混合灰狼和布谷鸟搜索优化算法(HGCS)。该算法巧妙地将GWO的社会等级机制和CS的莱维飞行机制相结合,旨在发挥两者各自的优势,提高算法的全局搜索能力和收敛速度。通过对多个标准测试函数的仿真实验,验证了HGCS算法的有效性和优越性。

2. 灰狼优化算法和布谷鸟搜索算法

2.1 灰狼优化算法(GWO)

灰狼优化算法模拟了灰狼的捕食行为。在GWO算法中,狼群被分为四个等级:α狼(领导狼)、β狼(次级狼)、δ狼(跟随狼)和ω狼(普通狼)。优化过程主要分为以下几个步骤:

2.2 布谷鸟搜索算法(CS)

布谷鸟搜索算法模拟了布谷鸟的寄生繁殖行为。在CS算法中,每个鸟巢代表一个解。主要步骤如下:

3. 混合灰狼和布谷鸟搜索优化算法(HGCS)

HGCS算法融合了GWO的社会等级机制和CS的莱维飞行机制。其核心思想是在算法的不同阶段利用不同的搜索策略,以平衡全局搜索和局部搜索能力。具体来说,HGCS算法在迭代初期,利用CS的莱维飞行进行全局搜索,增加种群的多样性;随着迭代的进行,逐渐过渡到利用GWO的社会等级机制进行局部搜索,加速收敛速度。

4. 实验结果与分析

为了验证HGCS算法的性能,本文选择了一组标准测试函数进行实验,包括单峰函数和多峰函数。实验环境为MATLAB R2020b,参数设置如下:种群大小为30,最大迭代次数为1000,GWO和CS的相关参数采用默认值。所有实验结果均重复运行30次,并取平均值和标准差。

实验结果表明:

  • 收敛速度: 在所有测试函数上,HGCS算法均表现出比GWO和CS算法更快的收敛速度。这说明HGCS算法通过在不同阶段利用不同的搜索策略,有效提高了收敛效率。

  • 解的精度: HGCS算法在多数测试函数上均获得了更精确的最优解,且标准差更小。这表明HGCS算法具有更好的全局搜索能力和更强的鲁棒性。

  • 鲁棒性: HGCS算法在多次运行中表现出更稳定的性能,这表明该算法具有较强的鲁棒性。

5. 结论

本文提出了一种混合灰狼和布谷鸟搜索优化算法(HGCS),该算法融合了GWO的社会等级机制和CS的莱维飞行机制,在算法的不同阶段采用不同的搜索策略,有效提高了算法的收敛速度、解的精度和鲁棒性。实验结果表明,HGCS算法在多个标准测试函数上均优于传统的GWO和CS算法。HGCS算法在解决复杂优化问题方面具有较强的应用潜力,可以推广到其他领域,如工程设计、机器学习、图像处理等。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制

🌿 往期回顾可以关注主页,点击搜索

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值