✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
在无线通信系统中,信道估计是恢复发送信号的关键环节。由于无线信道的复杂性和时变性,精确地估计信道状态信息(CSI)对于实现可靠和高效的通信至关重要。本文深入探讨了三种常用的信道估计算法:最小二乘(LS)算法、最小均方误差(MMSE)算法以及基于压缩感知-正交匹配追踪(CS-OMP)的算法。我们将详细阐述这些算法的基本原理、数学模型、实现过程以及它们各自的优点与缺点。通过对比分析,揭示了在不同信道条件下,这些算法在估计精度、计算复杂度以及对先验信息的依赖性方面的差异。研究表明,LS算法简单易实现,但对噪声敏感;MMSE算法在已知信道统计特性时性能优异,但需要先验信息;而基于CS-OMP的算法则利用了信道的稀疏性,在稀疏信道环境下能够以较低的导频开销实现高精度估计。本文旨在为理解和选择适用于不同场景的信道估计算法提供理论基础和实践指导。
关键词: 信道估计;最小二乘;最小均方误差;压缩感知;正交匹配追踪;无线通信
1. 引言
随着第五代(5G)乃至未来更高代际移动通信技术的不断发展,对无线通信系统的性能要求日益提高。高速率、低时延、大连接、高可靠性是当前和未来通信系统的主要目标。为了实现这些目标,精确的信道状态信息(CSI)至关重要。CSI反映了信号在传输过程中所经历的衰落、多径效应、多普勒频移等信道特性,是实现相干解调、预编码、波束赋形、干扰抑制等关键技术的基础。
信道估计旨在根据接收信号和已知信息(如导频信号)来估计信道冲激响应或信道频率响应。这是一个典型的逆问题,由于噪声和干扰的存在,以及信道的时变性,精确的信道估计面临着严峻的挑战。传统的信道估计算法,如最小二乘(LS)和最小均方误差(MMSE),已经在过去的通信系统中得到了广泛应用。然而,随着信道环境的日益复杂,特别是多径分量增多,传统算法在某些场景下可能无法满足性能需求。
近年来,压缩感知(Compressed Sensing, CS)理论的兴起为解决稀疏信号的恢复问题提供了新的思路。无线信道,尤其是具有有限散射体或者在特定传播环境下,往往表现出稀疏性,即信道冲激响应在时域或频域上只有少数几个非零或显著非零的系数。基于CS的信道估计算法正是利用了这一稀疏特性,通过更少的测量(导频)来恢复完整的信道信息,从而可能降低导频开销,提高频谱效率。
本文将聚焦于LS、MMSE以及基于CS-OMP的三种典型信道估计算法。我们将从理论层面深入分析它们的原理、数学模型和实现步骤,并对比它们在估计性能、计算复杂度和先验信息需求等方面的特性。
2. 系统模型
考虑一个典型的单载波或者正交频分复用(OFDM)无线通信系统。假设在某个时刻,发送端发送信号 𝑥x,经过无线信道 ℎh 传输后,接收端接收到的信号 𝑦y 可以表示为:
3. 基于最小二乘(LS)的信道估计
LS算法是一种最简单直观的信道估计算法。其基本思想是找到一个信道估计值 𝐻^H^,使得接收信号与经过估计信道后的发送信号之间的误差的平方和最小。
⛳️ 运行结果
🔗 参考文献
[1] 于华楠,郭树旭.基于压缩感知的超宽带信道估计方法的研究[J].电子与信息学报, 2012, 34(6):5.DOI:10.3724/SP.J.1146.2011.01235.
[2] 马子骥,彭强,王炼红,等.基于压缩感知的低复杂度分数时延信道估计方法[J].电子测量与仪器学报, 2017, 31(5):7.DOI:10.13382/j.jemi.2017.05.011.
[3] 马子骥,彭强,周冰航,et al.基于分数时延信道模型的低复杂度信道估计方法[J].重庆邮电大学学报:自然科学版, 2017, 29(5):7.DOI:10.3979/j.issn.1673-825X.2017.05.006.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇