【任务分配】基于匈牙利算法看护机器人协同作业遗传算法GA路径规划(目标函数:能耗最低)附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

随着人口老龄化趋势的加剧以及对个性化医疗服务的需求日益增长,智能看护机器人已然成为弥合人力资源缺口、提升服务质量的关键技术力量。然而,单一机器人的能力往往有限,多机器人协同作业不仅能够拓展服务范围、提高工作效率,更能应对复杂多变的照护场景。在这种协同作业模式下,如何高效地为每个机器人规划最优路径,以最大限度地降低整体能耗,是当前机器人学领域面临的一项核心挑战。传统的路径规划算法,如Dijkstra或A*算法,更侧重于单个机器人在已知环境中的最优路径寻找,而对于多机器人协同作业的复杂任务分配和路径协调问题,则显得力有不逮。本篇文章将深入探讨一种结合匈牙利算法进行任务分配,并利用遗传算法(Genetic Algorithm, GA)进行路径规划的策略,旨在实现看护机器人协同作业中能耗的全局最优。

一、看护机器人协同作业任务分配与路径规划的挑战

看护机器人的协同作业场景往往伴随着一系列独特的挑战:

  • 动态的任务分配:

     在实际看护环境中,新的照护需求可能随时产生,原有的任务也可能发生优先级变化。机器人需要根据实时情况动态调整任务分配,确保紧急需求得到优先响应。

  • 复杂的环境感知与建模:

     看护环境通常是动态且不确定的,存在障碍物、人员移动等因素。机器人需要具备鲁棒的环境感知能力,并能构建准确的环境模型,以便进行有效的路径规划。

  • 多目标的优化:

     除了能耗最低,机器人协同作业还需要考虑任务完成时间、路径安全性、机器人之间的避碰等多种优化目标。将这些多目标进行有效的权衡和集成是关键所在。

  • 计算复杂度:

     随着机器人数量和任务数量的增加,可能的任务分配组合呈指数级增长,路径规划的搜索空间也急剧扩大。如何在可接受的计算时间内找到最优或接近最优的解是亟待解决的问题。

  • 能量约束:

     看护机器人通常依赖电池供电,能量是其重要的约束条件。如何在完成任务的同时最大限度地延长机器人续航时间,降低能耗,直接影响到系统的可用性和效率。

二、匈牙利算法在任务分配中的应用

在看护机器人协同作业中,任务分配是路径规划的前提。一种高效的任务分配策略能够显著简化后续的路径规划过程。匈牙利算法(Hungarian Algorithm),也称为Kuhn-Munkres算法,是一种用于解决二分图最大权匹配问题的经典算法。在我们的场景中,我们可以将机器人集合和任务集合分别视为二分图的两个顶点集合,而机器人完成每个任务的代价(例如,从机器人当前位置到任务地点所需的能量)可以视为二分图边的权重。匈牙利算法能够找到一个最优匹配,使得总的代价最小。

将匈牙利算法应用于看护机器人任务分配,其核心思想在于构建一个代价矩阵,其中矩阵的元素表示第i个机器人完成第j个任务所需的能耗。通过应用匈牙利算法,可以找到一种任务到机器人的最优匹配,使得所有已分配任务的总能耗最低。这一步骤有效地解决了“谁去做哪个任务”的问题,为后续的路径规划提供了清晰的指导。

具体实施步骤:

  1. 构建代价矩阵:

     对于m个机器人和n个待执行任务,构建一个m x n 的代价矩阵C,其中 𝐶𝑖𝑗Cij 表示第i个机器人完成第j个任务所需的能耗。这个能耗可以通过机器人当前位置到任务地点的直线距离或预估路径长度乘以单位距离能耗来近似。

  2. 应用匈牙利算法:

     利用匈牙利算法对代价矩阵进行求解,找到一个最优的二分图匹配,即确定每个机器人应该负责哪个任务。如果任务数量大于机器人数量,则需要对任务进行分组或优先级排序;如果机器人数量大于任务数量,则部分机器人可能处于待命状态。

  3. 生成任务列表:

     基于匈牙利算法的匹配结果,为每个被分配任务的机器人生成一个有序的任务列表。这个列表指明了机器人需要完成的任务及其顺序(如果任务本身有顺序要求)。

通过匈牙利算法进行任务分配,能够在一定程度上保证任务分配的局部最优性,即在当前的任务和机器人集合下,能耗最低的任务分配方案。这为后续的路径规划奠定了良好的基础。

三、基于遗传算法的路径规划

在任务分配完成后,每个机器人获得了需要完成的任务列表。接下来需要为每个机器人规划一条最优路径,使得完成其分配任务的总能耗最低。由于环境的复杂性和多任务的特性,传统的确定性算法难以应对大规模、动态的环境。遗传算法(Genetic Algorithm, GA)作为一种模拟自然选择和遗传机制的优化算法,在求解复杂的非线性优化问题方面具有独特的优势,尤其适用于在大型搜索空间中寻找近似最优解。

遗传算法在路径规划中的应用流程:

初始种群生成:

 随机生成一组具有不同任务点访问顺序的初始路径,形成初始种群。为了提高搜索效率,可以包含一些基于启发式规则生成的路径。

  1. 适应度函数设计:

     适应度函数是衡量个体(路径)优劣的标准。在能耗最低的优化目标下,适应度函数可以设计为与路径总能耗呈负相关关系,或者直接将路径总能耗的倒数作为适应度值。路径总能耗可以通过计算路径上每段路程的能耗之和来获得。能耗计算可以考虑行走距离、速度、载荷以及环境因素等。

  2. 选择操作:

     根据个体的适应度值,选择一部分优秀的个体进入下一代。常用的选择策略包括轮盘赌选择、锦标赛选择等。适应度高的个体被选中的概率更大。

  3. 交叉操作:

     选中的个体之间进行交叉,生成新的个体。交叉操作模拟生物的基因重组,旨在结合父代的优良基因。在路径规划中,可以采用部分匹配交叉(Partially Matched Crossover, PMX)等针对排列编码的交叉方法,以保证新生成的个体仍然是合法的路径(访问所有任务点且不重复)。

  4. 变异操作:

     对新生成的个体进行变异操作,引入随机性,增加种群的多样性,避免陷入局部最优解。在路径规划中,可以随机交换路径中两个任务点的顺序,或者随机插入或删除一个任务点(如果允许)。

  5. 迭代与终止条件:

     重复进行选择、交叉和变异操作,不断迭代更新种群。设置合适的终止条件,例如达到最大迭代次数、种群的适应度不再显著提高等。

遗传算法与能耗优化的结合:

在遗传算法的框架下,能耗优化主要体现在适应度函数的设计上。精确计算路径的能耗是提升优化效果的关键。除了简单的距离能耗模型,还可以考虑:

  • 速度对能耗的影响:

     机器人以不同的速度行驶,能耗也不同。将速度作为路径规划的一个变量,并在适应度函数中体现速度与能耗的关系。

  • 转弯和刹车能耗:

     频繁的转弯和刹车也会消耗能量。在路径计算中考虑这些因素的能耗。

  • 环境因素:

     地面摩擦力、坡度等环境因素也会影响能耗,可以在能耗模型中加以考虑。

  • 任务负载:

     机器人携带不同负载时,能耗也会变化。对于需要搬运物品的看护任务,需要将负载因素纳入能耗计算。

通过设计更精细的能耗模型,遗传算法能够更准确地评估不同路径的能耗,从而引导搜索过程 towards 能耗最低的解决方案。

四、匈牙利算法与遗传算法的协同

本方案的核心在于将匈牙利算法和遗传算法相结合,充分发挥各自的优势。匈牙利算法负责在宏观层面进行任务分配,确保任务能够以相对最优的代价分配给合适的机器人。而遗传算法则在微观层面为每个机器人规划其具体路径,进一步优化每个机器人完成其分配任务的总能耗。

协同流程:

  1. 任务分配阶段:

     利用匈牙利算法对当前的待执行任务进行分配,生成每个机器人的任务列表。这一步确保了任务分配的初步优化。

  2. 路径规划阶段:

     对于每个被分配任务的机器人,以其任务列表为基础,利用遗传算法为其规划一条最优路径。遗传算法的适应度函数以该机器人完成其分配任务的总能耗为优化目标。

  3. 执行与反馈:

     机器人按照规划好的路径执行任务。在执行过程中,可以收集实际的能耗数据、任务完成情况等信息,作为后续任务分配和路径规划的反馈。

  4. 动态调整:

     当有新的任务产生、原有任务发生变化或环境发生改变时,系统可以重新启动任务分配和路径规划过程,实现动态调整。

这种协同模式具有以下优势:

  • 降低计算复杂度:

     先通过匈牙利算法进行任务分配,将一个复杂的全局路径规划问题分解为多个相对简单的单机器人路径规划问题,降低了整体的计算复杂度。

  • 保证任务分配的有效性:

     匈牙利算法能够找到最优的任务分配方案,避免出现机器人能力与任务需求不匹配的情况。

  • 提高路径规划的效率和鲁棒性:

     遗传算法能够有效地在复杂的环境中搜索最优路径,并且对环境变化具有一定的鲁棒性。

  • 实现全局能耗优化:

     通过将匈牙利算法的任务分配优化与遗传算法的路径能耗优化相结合,能够实现看护机器人协同作业的整体能耗最低。

⛳️ 运行结果

🔗 参考文献

[1] 齐剑.基于音乐墙的多机器人路径规划研究[D].安徽理工大学,2017.DOI:10.7666/d.Y3236505.

[2] 任东锋,方宗德.并行设计中任务调度问题的研究[J].计算机集成制造系统, 2005, 11(1):7.DOI:CNKI:SUN:JSJJ.0.2005-01-007.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值